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Optimization of the Idaho National Laboratory 
Water-Quality Aquifer Monitoring Network, 
Southeastern Idaho

By Jason C. Fisher, Roy C. Bartholomay, Gordon W. Rattray, and Neil V. Maimer

Abstract
Long-term monitoring of water-quality data collected 

from wells at the Idaho National Laboratory (INL) has 
provided essential information for delineating the movement 
of radiochemical and chemical wastes in the eastern Snake 
River Plain aquifer, southeastern Idaho. Since 1949, the U.S. 
Geological Survey, in cooperation with the U.S. Department 
of Energy, has maintained as many as 200 wells in the INL 
water-quality monitoring network. A network design tool, dis-
tributed as an R package, was developed to evaluate and opti-
mize groundwater monitoring in the existing network based 
on water-quality data collected at 153 sampling sites since 
January 1, 1989. The objective of the optimization design 
tool is to reduce well monitoring redundancy while retaining 
sufficient data to reliably characterize water-quality conditions 
in the aquifer. A spatial optimization was used to identify a 
set of wells whose removal leads to the smallest increase in 
the deviation between interpolated concentration maps using 
the existing and reduced monitoring networks while preserv-
ing significant long-term trends and seasonal components in 
the data. Additionally, a temporal optimization was used to 
identify reductions in sampling frequencies by minimizing the 
redundancy in sampling events.

Spatial optimization uses an islands genetic algorithm to 
identify near-optimal network designs removing 10, 20, 30, 
40, and 50 wells from the existing monitoring network. With 
this method, choosing a greater number of wells to remove 
results in greater cost savings and decreased accuracy of the 
average relative difference between interpolated maps of the 
reduced-dataset and the full-dataset. The genetic search algo-
rithm identified reduced networks that best capture the spatial 
patterns of the average concentration plume while preserving 
long-term temporal trends at individual wells. Concentration 
data for 10 analyte types are integrated in a single optimization 
so that all datasets may be evaluated simultaneously. A con-
stituent was selected for inclusion in the spatial optimization 
problem when the observations were sufficient to (1) establish 

a two-range variability model, (2) classify at least one con-
centration time series as a continuous record block, and (3) 
make a prediction using the quantile-kriging interpolation 
method. The selected constituents include sodium, chloride, 
sulfate, nitrate, carbon tetrachloride, 1,1-dichloroethylene, 
1,1,1-trichloroethane, trichloroethylene, tritium, strontium-90, 
and plutonium-238.

In temporal optimization, an iterative-thinning method 
was used to find an optimal sampling frequency for each 
analyte-well pair. Optimal frequencies indicate that for many 
of the wells, samples may be collected less frequently and 
still be able to characterize the concentration over time. The 
optimization results indicated that the sample-collection inter-
val may be increased by an of average of 273 days owing to 
temporal redundancy.

Introduction
The Idaho National Laboratory (INL), operated by the 

U.S. Department of Energy (DOE), encompasses about 890 
square miles of the eastern Snake River Plain (ESRP) in 
southeastern Idaho (fig.1; app. 1). The INL was established 
in 1949 to develop atomic energy, nuclear safety, defense 
programs, environmental research, and advanced energy con-
cepts. Wastewater disposal sites at the Test Area North (TAN), 
the Naval Reactors Facility (NRF), the Advanced Test 
Reactor Complex, and the Idaho Nuclear Technology and 
Engineering Center (INTEC) (figs. 1–3) have contributed 
radioactive- and chemical-waste contaminants to the ESRP 
aquifer. These sites incorporated various wastewater disposal 
methods, including lined evaporation ponds, unlined percola-
tion (infiltration) ponds and ditches, drain fields, and injection 
wells. Waste materials buried in shallow pits and trenches 
within the Subsurface Disposal Area at the Radioactive Waste 
Management Complex (RWMC) also have contributed con-
taminants to groundwater.
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Figure 3.  Location of wells in the U.S. Geological Survey aquifer water-quality monitoring network at the Radioactive 
Waste Management Complex (RWMC), Idaho National Laboratory, Idaho, 1989–2018.

Since 1949, the U.S. Geological Survey (USGS) has 
worked in cooperation with the DOE at the INL to define the 
following:

1.	The quality and availability of water for human 
consumption;

2.	The usability of the water for supporting construction 
and cooling of facilities, and for diluting concentrated 
waste streams;

3.	The location and movement of contaminants in the 
ESRP aquifer and perched groundwater zones;

4.	The sources of recharge to the aquifer;

5.	An early detection network for contaminants moving 
past the INL boundaries; and

6.	The processes controlling the origin and distribution of 
contaminants and naturally occurring constituents in the 
aquifer (Ackerman and others, 2010).

Since its inception, this water-quality monitoring 
program at the INL has included a network that once num-
bered as many as 200 wells. The network of wells has been 
sampled over the years for tritium, strontium-90, iodine-129, 
cesium-137, plutonium-238, plutonium-239 and -240 (undi-
vided), americium-241, gross alpha- and gross beta-radioactiv-
ity, sodium, bromide, chloride, fluoride, sulfate, nitrate, chro-
mium and other trace elements, volatile organic compounds 
(VOCs), and total organic carbon (TOC) (Bartholomay, 2013; 
Davis and others 2013). Most of the wells in this network 
were constructed as open boreholes, and many are open to the 
aquifer throughout their entire depth below the water table.

The INL water-quality monitoring network has provided 
vital information for waste management in the ESRP aquifer. 
Data from this network have been used to identify contami-
nant concentrations and to define patterns of waste migration 
in the aquifer and perched groundwater zones (Bartholomay 
and others, 2017, p. 7). Improving the efficiency of the 
monitoring network is desirable because of high network-
maintenance costs and funding constraints. The design of a 
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long-term monitoring (LTM) network is dependent on the 
spatial and temporal distribution of constituents in the aquifer. 
These distributions are extremely complicated in the ESRP 
given its diverse geology, perched alluvial conditions that 
overlie the regional aquifer, variable fluxes between ground-
water and surface water, rapid preferential flow in certain geo-
logic layers, and the long and uncertain history of wastewater 
disposal at INL facilities.

A more efficient LTM network may be established by 
evaluating the value of observations measured at each sam-
pling site and the degree to which observations are statisti-
cally redundant. Spatially redundant wells were identified for 
removal from the network and the frequency of sampling was 
reduced where temporal redundancy was identified in the sam-
pling record. In this report, a heuristic optimization procedure 
was used to redesign the existing INL aquifer water-quality 
monitoring network. Heuristic is a technique for efficiently 
guiding the process of optimization; it does not guarantee that 
the best solution will be determined. This study was conducted 
by the USGS in cooperation with the DOE.

Purpose and Scope

This report presents an optimization analysis of water-
quality data collected from selected wells completed in the 
ESRP aquifer at and near the INL to identify and remove 
redundancy in the existing monitoring network, for the pur-
pose of reducing LTM costs while incurring a minimal loss 
of statistical information. Redundancy is defined by Cameron 
(2004) as the ability of a reduced-dataset to accurately recon-
struct features or characteristics that were estimated from 
the full-dataset. The cost savings derived from the removal 
of sampling sites (or locations) from the existing network, 
or reduction in sampling frequency, is realized by not col-
lecting (and analyzing) the additional water samples. Spatial 
and temporal redundancy were examined using two different 
approaches; that is, the spatial and temporal components of the 
optimization were performed separately.

Spatial optimization was performed by removing redun-
dant sampling sites from the existing monitoring network. The 
redundancy of a removed site was evaluated by assessing the 
ability of the reduced-dataset to accurately represent plume 
maps interpolated for selected analytes using the full-dataset, 
where a full-dataset map is assumed to provide a realistic 
estimate of the concentration plume in the aquifer. Maps of 
the spatial distribution of analyte concentrations in ground-
water were predicted by kriging, a geostatistical method 
that interpolates concentration values for locations between 
sampling sites. The quality of the network design also entails 
consideration of other (sometimes competing) objectives 
including (1) minimizing the interpolation error to ensure that 
the best spatial coverage is retained in the reduced-monitoring 
network; (2) safeguarding against the removal of sites with 
significant long-term trends that may be useful for evaluat-
ing the effectiveness of remediation efforts at the INL; and 

(3) safeguarding against the removal of sites with repeated 
sampling at regular intervals over multiple years, and showing 
large variability in analyte concentrations, so as to preserve 
the long-term history of the sampling program. The presence 
and slope of long-term trends were estimated using survival 
analysis, a regression method that accounts for censored 
concentration data. A local regression analysis (also known 
as scatterplot smoothing) was used to estimate the presence 
and variability of sampling at a well. The final decision on the 
number of sampling sites to remove from the existing monitor-
ing network was left as a management decision and entails a 
trade-off between cost savings and information loss.

Temporal optimization was performed on a well-by-well 
basis using an iterative-thinning method proposed by Cameron 
(2003). This method examines whether the historical sam-
pling frequency for a given well location and constituent may 
be reduced because of temporal redundancy in the sampling 
events. Sampling events are removed from the sampling 
record to characterize the level of redundancy in trends 
(Cameron, 2004, p. 91). A local regression analysis was used 
to estimate trend (that is, the long-term trend with seasonality) 
over the sampled data range. The procedure used to evalu-
ate the ability of a reduced-dataset to accurately represent the 
existing trend was as follows:

1.	Estimate the uncertainty around the trend fitted to the 
full-dataset,

2.	Estimate the trend fitted to the reduced-dataset, and

3.	Calculate the proportion of this trend that is within the 
uncertainty interval of the existing trend.

Repeated random sampling was used to safeguard against 
irregular trends that may arise from the selection of a single 
set of sampling events to remove from the existing sampling 
record. The number of sampling events that may be removed 
was constrained by an upper limit placed on the proportion of 
the trend that may lie outside the uncertainty interval of the 
existing trend, thus ensuring an acceptable level of accuracy 
in trend estimates. By maximizing the fraction of sampling 
events to remove from the historical record, an instance of the 
reduced-dataset was found and its average sampling interval 
was estimated. An optimal sampling frequency was recom-
mended for each well-analyte combination.

Geohydrologic Setting

The INL is located on the west-central part of the ESRP. 
The ESRP is a northeast-trending structural basin about 200 
mi long and 50–70 mi wide (fig. 1). The basin, bounded by 
faults on the northwest and by downwarping and faulting on 
the southeast, has been filled with basaltic lava flows interbed-
ded with terrestrial sediments. The basaltic rocks and sedimen-
tary deposits combine to form the ESRP aquifer, which is the 
primary source of groundwater for the ESRP.



6    Optimization of the Idaho National Laboratory Water-Quality Aquifer Monitoring Network, Southeastern Idaho

The ESRP aquifer is one of the most productive aquifers 
in the United States (U.S. Geological Survey, 1985, p. 193). 
Groundwater generally moves from northeast to southwest, 
and eventually discharges to springs along the Snake River 
downstream from Twin Falls, Idaho, about 100 mi southwest 
of the INL (fig. 1). Groundwater moves horizontally through 
basalt interflow zones and vertically through joints and inter-
fingering edges of basalt flows. Infiltration of surface water, 
heavy pumpage, geohydrologic conditions, and seasonal 
fluxes of recharge and discharge locally affect the move-
ment of groundwater (Garabedian, 1986). The ESRP aquifer 
is recharged primarily from infiltration of applied irrigation 
water, infiltration of streamflow, groundwater inflow from 
adjoining mountain drainage basins, and infiltration of precipi-
tation (Ackerman and others, 2006).

At the INL, depth to water in wells completed in the 
ESRP aquifer ranges from about 225 ft below land surface in 
the northern part of the INL to more than 900 ft below land 
surface in the southeastern part of the INL (Bartholomay and 
others, 2017, p. 21). A significant proportion of the ground-
water moves through the upper 200–800 ft of basaltic rock 
(Mann, 1986, p. 21). Ackerman (1991, p. 30) and Bartholomay 
and others (1997, table 3) reported transmissivity values 
for basalt in the upper part of the aquifer ranging from 1.1 
to 760,000 ft2/d. The lateral hydraulic gradient at the INL 
ranges from 2 to 10 ft/mi, with an average of 4 ft/mi (Davis 
and others, 2013, fig. 9). Horizontal flow velocities of 2 to 26 
ft/d have been calculated based on the movement of vari-
ous constituents in different areas of the aquifer at and near 
the INL (Robertson and others, 1974; Mann and Beasley, 
1994; Cecil and others, 2000; Plummer and others, 2000; and 
Busenberg and others, 2001). These flow velocities equate to 
a travel time of about 50–700 years for water beneath the INL 
to travel to springs that discharge at the terminus of the ESRP 
groundwater-flow system near Twin Falls, Idaho (fig. 1). 
Localized tracer tests at the INL have shown that vertical- and 
horizontal-solute transport rates are as high as 60–150 ft/d 
(Nimmo and others, 2002; Duke and others, 2007).

Olmsted (1962), Robertson and others (1974), and 
Busenberg and others (2001) classified groundwater at the INL 
based on chemical types derived from dissolution of the rocks 
and minerals within the recharge source areas. Olmsted’s Type 
A water consisted of calcium and magnesium concentrations 
that constituted at least 85 percent of the cations, and bicar-
bonate constituted at least 70 percent of the anions. Type A 
water is present in the central and western part of the INL. 
Type A water is attributed to seepage loss from the Big Lost 
River and from groundwater underflow from the Big Lost 
River, Little Lost River, and Birch Creek drainage basins to 
the west and northwest of the INL (fig. 1) that contain allu-
vium derived from Paleozoic carbonate rocks from the sur-
rounding mountains.

Olmsted’s Type B water, which is characterized by higher 
equivalent fractions of sodium, potassium, fluoride, and silica 
than Type A water, underlies much of the eastern part of the 
INL and is often referred to as regional water. 

The groundwater originates from the area northeast of the INL 
that is composed of a much higher fraction of rhyolitic and 
andesitic volcanic rocks than mountains west and northwest 
of the INL that contribute to Type A water. Busenberg and 
others (2001) used age dating techniques of chlorofluorocar-
bons (CFCs), sulfur hexafluoride, and tritium/helium to further 
classify the regional water at the INL into two types based 
on the recharge type of the young fraction of groundwater. 
Water in the southeastern part of the INL represented a binary 
mixture of old (water greater than 40 and 55 years old that did 
not contain tritium or CFCs, respectively) regional groundwa-
ter underflow with young water derived from rapid, focused 
recharge, probably from precipitation infiltration. Water in the 
northeastern part of the INL is (1) old, regional groundwater 
underflow that is mixed with local rapid, focused recharge; (2) 
slow, diffuse areal recharge through the unsaturated zone; and 
(3) agricultural return flow from the Mud Lake area (fig. 1).

Previous Investigations

The USGS INL Project Office has examined the hydro-
logic conditions and distribution of selected wastewater con-
stituents in groundwater and perched groundwater at the INL 
since operations began in 1949. Numerous previous investiga-
tions on the hydrology, water quality, and geology have been 
conducted by INL contractors, State agencies, and the USGS. 
The USGS provides a list of references to published reports 
from its previous INL studies at the USGS INL Project Office 
web page (U.S. Geological Survey, 2020).

In 2010, the USGS INL Project Office began studies to 
optimize their LTM networks. Fisher (2013) performed an 
optimization of the water-level monitoring network using 
a kriging-based genetic algorithm method. He identified 40 
wells that could be removed from the monitoring network 
without significant loss of accuracy.

For the optimization of the aquifer water-quality moni-
toring network, three reports initially were planned, of which 
this report was the third. Bartholomay and others (2012) used 
statistical methods to determine trends for selected constitu-
ents for 67 wells and 7 surface-water sites sampled at the 
INL that were considered unaffected by wastewater disposal. 
They determined that chloride trends in wells influenced by 
recharge from the Big Lost River either decreased or had vari-
able increases and decreases because of wet and dry cycles of 
precipitation and runoff. Wells influenced by regional recharge 
showed increasing trends for chloride, sodium, sulfate, and 
nitrate, and increases were attributed to agricultural or other 
anthropogenic influences upgradient from the INL. Some 
wells near the NRF and Power Burst Facility showed increas-
ing trends, possibly owing to wastewater disposal at those 
facilities.

Davis and others (2015) used statistical methods to deter-
mine trends for selected constituents from 64 aquifer wells and 
35 perched groundwater wells at the INL that were believed 
to be influenced by wastewater disposal. Trend test results for 
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tritium and strontium-90 concentrations in aquifer wells indi-
cated that nearly all wells had decreasing or no trends. Trend 
test results for chloride, sodium, sulfate, nitrate, chromium, 
trace elements, and TOC concentrations in aquifer wells 
also indicated that most wells had decreasing or no trends. 
Decreasing trends were attributed to discontinued disposal 
practices and dilution and dispersion in the aquifer. Sodium 
concentrations showed increasing trends in wells at Central 
Facilities Area (CFA) and downgradient. Carbon tetrachloride 
had increasing trends in a couple of wells near RWMC, but all 
other wells showed decreasing or no trend.

Optimizing LTM networks with the aim of removing data 
from the system because they add little to no beneficial infor-
mation has received increasing attention in the recent past. An 
in-depth description of the optimization problem was provided 
by Cameron (2004). Previous efforts to eliminate redundancy 
in existing groundwater monitoring networks have separately 
examined the temporal and spatial components of redundancy. 
Johnson and others (1996) performed a temporal optimiza-
tion by reducing sampling frequency. Reed and others (2000) 
performed a spatial optimization by reducing the number of 
sampling locations. And Cameron and Hunter (2002) reduced 
redundancy both spatially and temporally by performing 
separate optimizations for each domain—an approach that was 
also used in this report.

Use of prediction uncertainty is another promising 
approach for network design. Fienen and others (2010) use a 
PEST framework to evaluate the uncertainty of a model pre-
diction to determine observations that may be excluded from 
an existing hydrologic monitoring network.

Computer Software

Using a software development methodology, we took a 
highly reproducible approach for optimizing the USGS INL 
water-quality aquifer monitoring network. Reproducibility 
requires archiving and documenting all datasets and com-
puter source code used to optimize/analyze the monitoring 
network—an undertaking made easier by the advances in open 
source software, open file formats, and cloud computing. The 
collection of source code and processing instructions used to 
optimize the monitoring network was placed in a software 
package referred to as ObsNetQW (Fisher, 2021). The col-
lection of datasets available for the USGS INL water-quality 
and water-level monitoring networks was placed in a software 
package named inldata (Fisher, 2020). These packages are 
an extension of the R-programming language (R Core Team, 
2019) and allow for easy, transparent, and cross-platform dis-
tribution of their content by enforcing a set of formal format 
standards. A manual describing package datasets and process-
ing programs (also known as functions in R) is provided in 
appendix 2.

Sources and Descriptions of Data

Water-Quality Data Collection

The USGS monitoring of groundwater quality in the 
ESRP aquifer beneath the INL and vicinity is an ongoing 
long-term program that began in 1949. Water samples col-
lected from wells in the monitoring network were analyzed for 
some combination of concentrations of tritium, strontium-90, 
cesium-137, plutonium-238, plutonium-239 and -240 (undi-
vided), americium-241, gross alpha and beta-particle radio-
activity; chromium, sodium, chloride, and sulfate; nutrients 
including nitrite plus nitrate (as nitrogen [N]), nitrite (as N), 
orthophosphate (as phosphorus [P]), and ammonia (as N); and 
VOCs. This report presents an analysis that uses a subset of 
this water-quality dataset that was collected during 1989–2018 
(U.S. Geological Survey, 2019). Data collected prior to 1989 
were omitted from analysis to eliminate bias introduced 
through (1) samples being tainted by cable drilling, and (2) 
changes in the analytical testing laboratory for chemical con-
stituents and organic compounds.

Starting in 1989, water samples were collected from 133 
ESRP aquifer wells (figs. 1–3; app. 1), or 153 sampling sites 
when accounting for multilevel monitoring (table 1). During 
2005–12, 10 wells were equipped with multilevel monitoring 
systems (MLMS) that allow water-quality measurements to 
be acquired at isolated depths (figs. 1–2). Since 1989, water 
samples have been analyzed for chemical constituents and 
organic compounds at the USGS National Water Quality 
Laboratory (NWQL) in Lakewood, Colorado. Prior to 1989, 
water samples were analyzed by various laboratories for chlo-
ride, chromium, sodium, and nitrate (Wegner, 1989). Water 
samples have been analyzed for radionuclides at the DOE 
Radiological and Environmental Sciences Laboratory at the 
INL since samples were first collected. Many of the samples 
collected in the 1950s, 1960s, and 1970s were collected during 
or immediately after cable drilling, and some of the samples 
had a high probability of containing impurities introduced by 
the drilling (Robertson and others, 1974, app. B).

Methods used to sample and analyze for selected constit-
uents generally follow the guidelines established by the USGS 
(Goerlitz and Brown, 1972; Stevens and others, 1975; Wood, 
1976; Thatcher and others, 1977; Claassen, 1982; Wershaw 
and others, 1987; Fishman and Friedman, 1989; Faires, 1993; 
Fishman, 1993; and U.S. Geological Survey, variously dated). 
Water samples were collected according to a quality-assurance 
plan for water-quality activities conducted by personnel at the 
USGS INL Project Office. The plan was finalized in June 1989 
and revised in March 1992, in 1996 (Mann, 1996), in 2003 
(Bartholomay and others, 2003), in 2008 (Knobel and others, 
2008), and in 2014 (Bartholomay and others, 2014). The plan 
is available for inspection at the USGS INL Project Office.
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Table 1.  Wells in the U.S. Geological Survey aquifer water-quality monitoring network, eastern Snake River Plain aquifer, Idaho 
National Laboratory, Idaho, 1989–2018.

[Well name: Local well name with site locations shown in figs. 1, 2, and 3. Site No.: Site identifier assigned by the U.S. Geological Survey  
(https:/​/waterdata​.usgs.gov/​nwis). Well depth: feet bls, feet below land surface. For wells instrumented with Multilevel Monitoring Systems, well depth repre-
sents a sampling-port depth. Period of record: For water samples collected during 1989–2018, in mm-dd-yy (month-day-year). Number of replicate samples: 
Number of replicate samples used to estimate variability (random measurement error) of analytical results. Replicate samples are composed of a pair of environ-
mental samples collected sequentially, over a period of 12 hours or less, from a monitoring well]

Well name Site No.
Well depth 
(feet bls)

Period of record 
(mm-dd-yy)

Number 
of 

environ- 
mental 

samples

Number 
of 

replicate 
samples

ANP 6 435152112443101 295 07-02-92 to 10-18-17 51 5
ANP 9 434856112400001 322 04-13-94 to 10-18-11 55 7
ARBOR TEST 433509112384801 790 02-15-89 to 04-21-11 72 9
AREA 2 433223112470201 876 09-20-90 to 10-15-18 52 5
ATOMIC CITY WELL 1 432638112484101 639 04-05-89 to 04-09-18 82 9
BADGING FACILITY 433042112535101 644 04-28-89 to 04-11-18 66 6
CFA 1 433204112562001 639 01-25-89 to 04-11-18 134 8
CFA 2 433144112563501 681 01-25-89 to 10-10-17 122 8
CFA LF 2-10 433216112563301 716 10-20-93 to 04-23-18 73 7
CFA LF 3-9 433216112571001 500 10-22-93 to 04-02-07 32 6
CPP 1 433433112560201 586 04-26-89 to 04-19-18 101 6
CPP 2 433432112560801 605 01-31-89 to 10-04-18 90 7
CPP 4 433440112554401 700 04-26-89 to 10-18-16 83 5
EBR 1 433051113002601 1,075 04-28-89 to 04-20-11 76 9
HIGHWAY 3 433256113002501 750 04-05-89 to 10-16-18 79 7
MIDDLE 2050A 433409112570515 539 09-30-05 to 06-12-18 21 2
MIDDLE 2051 433217113004901 1,177 09-29-05 to 06-28-17 16 0
MIDDLE 2051 433217113004903 1,128 09-28-05 to 06-13-18 21 2
MIDDLE 2051 433217113004906 876 09-28-05 to 06-28-17 19 2
MIDDLE 2051 433217113004909 771 09-27-05 to 06-13-18 23 5
MTR TEST 433520112572601 588 03-27-89 to 04-02-18 91 11
NO NAME 1 435038112453401 552 05-22-91 to 04-11-18 69 6
NPR TEST 433449112523101 600 06-20-91 to 10-11-18 67 7
P AND W 2 435419112453101 378 04-18-89 to 04-02-18 83 7
PSTF TEST 434941112454201 319 07-13-89 to 10-18-11 61 6
RIFLE RANGE 433243112591101 620 04-10-02 to 10-17-18 32 4
RWMC M11S 433058113010401 624 03-22-00 to 10-11-18 35 3
RWMC M12S 433118112593401 572 03-22-00 to 10-11-18 33 3
RWMC M13S 433037113002701 643 03-22-00 to 10-11-18 36 4
RWMC M14S 433052113025001 635 03-22-00 to 10-11-18 37 5
RWMC M3S 433008113021801 633 02-26-93 to 10-23-18 51 6
RWMC M7S 433023113014801 628 03-04-93 to 10-22-18 53 7
RWMC PROD 433002113021701 685 01-18-89 to 12-12-18 424 12
SITE 14 434334112463101 717 04-18-89 to 10-10-18 86 8
SITE 17 434027112575701 600 06-18-91 to 03-26-18 55 5
SITE 19 433522112582101 860 04-12-89 to 10-16-18 75 9
SITE 4 433617112542001 495 04-18-91 to 04-11-18 63 7

https://waterdata.usgs.gov/nwis
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Table 1.  Wells in the U.S. Geological Survey aquifer water-quality monitoring network, eastern Snake River Plain aquifer, Idaho 
National Laboratory, Idaho, 1989–2018.—Continued

[Well name: Local well name with site locations shown in figs. 1, 2, and 3. Site No.: Site identifier assigned by the U.S. Geological Survey  
(https:/​/waterdata​.usgs.gov/​nwis). Well depth: feet bls, feet below land surface. For wells instrumented with Multilevel Monitoring Systems, well depth repre-
sents a sampling-port depth. Period of record: For water samples collected during 1989–2018, in mm-dd-yy (month-day-year). Number of replicate samples: 
Number of replicate samples used to estimate variability (random measurement error) of analytical results. Replicate samples are composed of a pair of environ-
mental samples collected sequentially, over a period of 12 hours or less, from a monitoring well]

Well name Site No.
Well depth 
(feet bls)

Period of record 
(mm-dd-yy)

Number 
of 

environ- 
mental 

samples

Number 
of 

replicate 
samples

SITE 9 433123112530101 1,057 04-05-89 to 03-27-18 75 7
SPERT 1 433252112520301 653 04-28-89 to 04-11-18 66 7
TRA 1 433521112573801 600 04-27-89 to 11-06-13 54 5
TRA 3 433522112573501 602 04-27-89 to 10-16-18 62 9
TRA 4 433521112574201 965 11-13-89 to 04-04-17 67 11
TRA DISP 433506112572301 1,267 02-01-89 to 10-16-18 103 9
USGS 1 432700112470801 630 05-30-91 to 10-18-18 66 6
USGS 100 433503112400701 750 04-19-89 to 04-03-18 94 10
USGS 101 433255112381801 842 04-19-89 to 10-18-18 81 7
USGS 102 433853112551601 445 06-08-90 to 05-09-18 129 9
USGS 103 432714112560701 1,297 04-14-89 to 04-18-05 108 6
USGS 103 432714112560702 1,279 09-25-07 to 06-26-18 16 1
USGS 103 432714112560704 1,240 09-25-07 to 06-26-18 17 2
USGS 103 432714112560708 1,098 10-01-07 to 06-26-18 17 1
USGS 103 432714112560712 1,014 10-01-07 to 06-26-18 16 1
USGS 104 432856112560801 700 04-14-89 to 10-16-18 141 16
USGS 105 432703113001801 1,300 04-21-89 to 10-16-07 74 6
USGS 105 432703113001807 1102 09-17-09 to 06-27-18 15 2
USGS 105 432703113001811 982 09-17-09 to 06-27-18 13 1
USGS 105 432703113001815 862 09-18-09 to 06-27-18 14 1
USGS 106 432959112593101 760 04-14-89 to 10-17-18 99 11
USGS 107 432942112532801 690 04-11-89 to 03-27-18 87 9
USGS 108 432659112582601 1,196 04-21-89 to 04-29-08 75 6
USGS 108 432659112582602 1,194 09-20-10 to 06-25-18 11 1
USGS 108 432659112582606 1,060 09-22-10 to 06-26-13 7 2
USGS 108 432659112582610 904 09-20-10 to 06-26-13 7 2
USGS 109 432701113025601 800 04-21-89 to 04-23-18 87 8
USGS 11 432336113064201 704 05-01-89 to 04-09-18 94 10
USGS 110A 432717112501502 644 10-25-95 to 10-18-18 53 5
USGS 111 433331112560501 560 01-05-89 to 04-17-18 94 9
USGS 112 433314112563001 509 03-30-89 to 10-01-18 134 7
USGS 113 433314112561801 556 03-31-89 to 04-17-18 129 7
USGS 114 433318112555001 560 03-31-89 to 10-01-18 134 11
USGS 115 433320112554101 581 04-06-89 to 10-01-18 131 9
USGS 116 433331112553201 572 04-06-89 to 04-17-18 130 7
USGS 117 432955113025901 655 01-12-89 to 10-16-18 148 9
USGS 119 432945113023401 705 01-12-89 to 04-23-18 144 11
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Table 1.  Wells in the U.S. Geological Survey aquifer water-quality monitoring network, eastern Snake River Plain aquifer, Idaho 
National Laboratory, Idaho, 1989–2018.—Continued

[Well name: Local well name with site locations shown in figs. 1, 2, and 3. Site No.: Site identifier assigned by the U.S. Geological Survey  
(https:/​/waterdata​.usgs.gov/​nwis). Well depth: feet bls, feet below land surface. For wells instrumented with Multilevel Monitoring Systems, well depth repre-
sents a sampling-port depth. Period of record: For water samples collected during 1989–2018, in mm-dd-yy (month-day-year). Number of replicate samples: 
Number of replicate samples used to estimate variability (random measurement error) of analytical results. Replicate samples are composed of a pair of environ-
mental samples collected sequentially, over a period of 12 hours or less, from a monitoring well]

Well name Site No.
Well depth 
(feet bls)

Period of record 
(mm-dd-yy)

Number 
of 

environ- 
mental 

samples

Number 
of 

replicate 
samples

USGS 12 434126112550701 563 06-15-90 to 03-26-18 128 9
USGS 120 432919113031501 705 01-12-89 to 10-09-18 174 8
USGS 121 433450112560301 475 03-25-91 to 04-04-18 81 8
USGS 123 433352112561401 515 03-25-91 to 10-02-18 74 7
USGS 124 432307112583101 800 04-21-94 to 04-09-18 71 7
USGS 125 432602113052801 774 04-27-95 to 10-09-18 65 7
USGS 126A 435529112471301 648 11-08-00 to 04-19-11 29 4
USGS 126B 435529112471401 472 11-08-00 to 10-10-18 36 4
USGS 127 433058112572201 596 09-27-00 to 04-03-18 42 4
USGS 128 433250112565601 615 10-31-01 to 10-16-18 28 4
USGS 131A 433036112581803 1,157 10-24-12 to 06-15-15 5 0
USGS 131A 433036112581806 1,058 10-29-12 to 06-15-15 5 0
USGS 131A 433036112581810 842 10-29-12 to 06-19-18 8 0
USGS 131A 433036112581815 632 10-29-12 to 06-19-18 10 2
USGS 132 432906113025018 787 09-05-06 to 06-20-18 17 0
USGS 133 433605112554312 480 09-24-07 to 06-12-18 19 3
USGS 134 433611112595815 652 09-28-06 to 06-29-11 12 2
USGS 134 433611112595819 590 09-27-06 to 06-11-18 16 1
USGS 135 432753113093609 861 09-15-09 to 06-14-18 14 1
USGS 137A 432701113025801 895 10-23-12 to 06-19-17 6 0
USGS 137A 432701113025803 862 10-23-12 to 06-19-17 6 0
USGS 137A 432701113025805 784 10-23-12 to 06-18-18 8 0
USGS 137A 432701113025807 718 10-24-12 to 06-18-18 8 0
USGS 14 MV-61 432019112563201 752 04-01-89 to 10-09-18 95 8
USGS 15 434234112551701 610 06-06-90 to 10-24-11 70 4
USGS 17 433937112515401 498 12-14-89 to 04-09-18 87 4
USGS 18 434540112440901 329 10-12-90 to 04-12-18 53 7
USGS 19 434426112575701 399 04-03-89 to 04-02-18 84 8
USGS 2 433320112432301 699 05-28-91 to 04-12-18 51 7
USGS 20 433253112545901 658 04-01-89 to 04-17-18 89 8
USGS 22 433422113031701 657 04-05-89 to 04-25-11 60 8
USGS 23 434055112595901 458 05-21-91 to 10-09-18 68 8
USGS 26 435212112394001 267 05-23-91 to 04-10-18 67 6
USGS 27 434851112321801 312 03-24-89 to 04-02-18 83 7
USGS 29 434407112285101 426 06-12-91 to 10-11-18 55 7
USGS 31 434625112342101 428 06-12-91 to 04-10-18 55 7
USGS 32 434444112322101 392 06-12-91 to 04-10-18 56 7
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Table 1.  Wells in the U.S. Geological Survey aquifer water-quality monitoring network, eastern Snake River Plain aquifer, Idaho 
National Laboratory, Idaho, 1989–2018.—Continued

[Well name: Local well name with site locations shown in figs. 1, 2, and 3. Site No.: Site identifier assigned by the U.S. Geological Survey  
(https:/​/waterdata​.usgs.gov/​nwis). Well depth: feet bls, feet below land surface. For wells instrumented with Multilevel Monitoring Systems, well depth repre-
sents a sampling-port depth. Period of record: For water samples collected during 1989–2018, in mm-dd-yy (month-day-year). Number of replicate samples: 
Number of replicate samples used to estimate variability (random measurement error) of analytical results. Replicate samples are composed of a pair of environ-
mental samples collected sequentially, over a period of 12 hours or less, from a monitoring well]

Well name Site No.
Well depth 
(feet bls)

Period of record 
(mm-dd-yy)

Number 
of 

environ- 
mental 

samples

Number 
of 

replicate 
samples

USGS 34 433334112565501 700 03-31-89 to 04-16-18 85 8
USGS 35 433339112565801 579 03-31-89 to 10-03-18 87 8
USGS 36 433330112565201 567 03-31-89 to 04-16-18 123 9
USGS 37 433326112564801 572 03-31-89 to 10-03-18 95 11
USGS 38 433322112564301 724 03-31-89 to 04-16-18 90 9
USGS 39 433343112570001 492 03-31-89 to 10-21-13 119 9
USGS 4 434657112282201 553 06-04-91 to 10-19-11 60 5
USGS 41 433409112561301 666 04-07-89 to 10-04-18 84 7
USGS 42 433404112561301 678 04-07-89 to 04-19-18 85 7
USGS 43 433415112561501 564 04-20-89 to 10-02-18 84 7
USGS 44 433409112562101 650 04-07-89 to 04-18-18 104 10
USGS 45 433402112561801 651 04-07-89 to 10-02-18 95 8
USGS 46 433407112561501 651 04-07-89 to 04-18-18 98 9
USGS 47 433407112560301 651 01-31-89 to 10-04-18 102 9
USGS 48 433401112560301 750 04-06-89 to 04-19-18 92 9
USGS 5 433543112493801 494 09-26-90 to 04-12-18 67 6
USGS 51 433350112560601 647 04-17-89 to 04-18-18 84 9
USGS 52 433414112554201 602 04-07-89 to 10-03-18 86 7
USGS 57 433344112562601 582 01-05-89 to 10-02-18 127 7
USGS 58 433500112572502 503 04-13-89 to 04-02-18 90 14
USGS 59 433354112554701 590 04-17-89 to 04-18-18 90 11
USGS 6 434031112453701 620 09-26-90 to 10-20-11 45 6
USGS 65 433447112574501 498 02-17-89 to 04-04-18 138 9
USGS 67 433344112554101 694 04-11-89 to 10-01-18 74 9
USGS 7 434915112443901 903 05-20-91 to 04-11-18 66 7
USGS 76 433425112573201 718 04-07-89 to 04-05-18 99 11
USGS 77 433315112560301 586 03-31-89 to 10-01-18 87 8
USGS 79 433505112581901 702 04-01-89 to 04-05-18 88 8
USGS 8 433121113115801 812 05-01-89 to 04-10-18 82 7
USGS 82 433401112551001 693 04-14-89 to 04-17-18 125 9
USGS 83 433023112561501 752 04-13-89 to 04-25-11 79 10
USGS 84 433356112574201 505 04-01-89 to 10-18-18 85 8
USGS 85 433246112571201 614 04-01-89 to 04-16-18 88 9
USGS 86 432935113080001 691 04-21-89 to 06-06-18 81 6
USGS 87 433013113024201 673 01-04-89 to 04-10-18 141 9
USGS 88 432940113030201 663 01-04-89 to 10-22-18 196 9
USGS 89 433005113032801 714 01-04-89 to 05-09-18 140 9
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Table 1.  Wells in the U.S. Geological Survey aquifer water-quality monitoring network, eastern Snake River Plain aquifer, Idaho 
National Laboratory, Idaho, 1989–2018.—Continued

[Well name: Local well name with site locations shown in figs. 1, 2, and 3. Site No.: Site identifier assigned by the U.S. Geological Survey  
(https:/​/waterdata​.usgs.gov/​nwis). Well depth: feet bls, feet below land surface. For wells instrumented with Multilevel Monitoring Systems, well depth repre-
sents a sampling-port depth. Period of record: For water samples collected during 1989–2018, in mm-dd-yy (month-day-year). Number of replicate samples: 
Number of replicate samples used to estimate variability (random measurement error) of analytical results. Replicate samples are composed of a pair of environ-
mental samples collected sequentially, over a period of 12 hours or less, from a monitoring well]

Well name Site No.
Well depth 
(feet bls)

Period of record 
(mm-dd-yy)

Number 
of 

environ- 
mental 

samples

Number 
of 

replicate 
samples

USGS 9 432740113044501 654 04-21-89 to 10-17-18 86 5
USGS 97 433807112551501 510 04-19-89 to 03-26-18 153 9
USGS 98 433657112563601 508 04-19-89 to 10-15-18 149 7
USGS 99 433705112552101 440 04-19-89 to 10-11-18 152 7
WS INEL 1 433716112563601 490 04-19-89 to 04-05-18 102 5

Sample collection methods varied for several of the 
wells during the history of sampling. Permanent pumps were 
installed at various dates with most installations occurring 
from 1985 to the early 1990s. Prior to installation of pumps, 
wells were sampled using a portable thief sampler. Some of 
the samples collected with thief samplers were collected at 
different depths in the aquifer during the same sampling event. 
When the depths at which thief samples were collected were 
known, the data from the depth similar to the depth to which 
the current pump was set were used in the analyses. After 
pumps were installed, wells were purged for at least three well 
volumes prior to sample collection until October 2003, when 
procedures were changed to allow sample collection after one 
well volume was purged. Studies by Bartholomay (1993) and 
Knobel (2006) indicated that different purge rates used at the 
INL did not affect the analytical results for the wells analyzed 
in the respective studies.

Beginning in 1980, about 10 percent of water samples 
were collected for quality assurance (QA) purposes. Quality 
control (QC) water samples collected by the USGS INL 
Project Office generally include equipment blanks, splits, and 
blind replicates; however, other types of QC samples also 
have been collected throughout the history of the program. 
Comparative studies to determine agreement between analyti-
cal results for water-sample pairs by laboratories used by the 
INL Project Office QA program were summarized by Wegner 
(1989); Williams (1996, 1997); Rattray (2012); Davis and oth-
ers, (2013); and Rattray (2014). Wegner (1989) also statisti-
cally compared analytical results among different laboratories 
used from 1980 to 1988. Analyses of water-sample pairs 
were in statistical agreement for more than 95 percent of the 
samples compared.

The period of record, sample collection frequency, and 
list of analytes tested for, varied for all sites in the monitoring 
network. Since 2003, all sites have been sampled annually, 
but prior to that time frame, wells were sampled annually, 

semi-annually, quarterly, or even more frequently depending 
on the purpose of the sampling program. Some gaps in data 
occurred when pumps were out for repair, samples were lost, 
or program changes did not necessitate sampling of the analyte 
in question.

Nondetect Data

Measurements whose values are known only to be below 
a threshold (also known as a censoring level) are referred 
to as nondetects (or “left-censored data” in the statistical 
literature). Historically, the threshold used to censor analyti-
cal results was the minimum reporting level (MRL). The 
MRL is defined by the NWQL as the smallest measured 
concentration of a substance that can be measured reliably 
by using a given analytical method (Timme, 1995). Methods 
for choosing MRLs are subjective and no single procedure is 
universally used. In 1996, the NWQL began censoring data 
at the laboratory reporting level (LRL) for most inorganic 
constituents. The LRL generally is twice the method detection 
level (MDL), which is described as the minimum concentra-
tion of a substance that can be measured and reported with 
99-percent confidence that the analyte concentration is greater 
than zero (Childress and others, 1999). Analytical results that 
are less than a long-term method detection level (LT-MDL) 
are reported as less than the LRL. The LT-MDL differs from 
the MDL in that it incorporates laboratory variability and is 
calculated over an extended period of time. Analytical results 
that are greater than the LT-MDL and less than the LRL are 
reported as “estimated” values. For this report, the laboratory-
estimated values were assumed to be the actual values.

Among the 66 percent of samples that were nonde-
tects, a disproportionally large percentage were recorded for 
organic compounds. The average percentage of nondetects 
in each analyte group is as follows: 97 percent for organics, 
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5.1 percent for inorganics, 0.3 percent for radionuclides, and 
0.1 percent for nutrients. For analytes measured for in water 
samples, the number of values that were recorded as nondetec-
tions are shown in table 2.

Interpreting Radionuclides on the Basis of 
Analytical Results

The randomness of the measurement process for radio-
nuclides requires that the laboratory report the uncertainty 
associated with a single measurement. This measurement 
uncertainty is referred to as the combined standard uncertainty 
(CSU) and may be viewed as the statistical standard devia-
tion of an individual radiological result (McCurdy and others, 
2008, p. 3). Laboratories report the CSU at the 68 percent 
or 1-sigma confidence level (1σ CSU), which is obtained by 
propagating sources of analytical uncertainty in measure-
ments. McCurdy and others (2008) provide details on inter-
preting radiological data used by the USGS. The guidelines for 
interpreting analytical results are based on an extension of a 
method proposed by Currie (1984).

The measured concentration and associated CSU are used 
to calculate a confidence interval (CI) about the measured 
concentration. The CI defines a range of concentration (the 
upper and lower limits) within which the “true value” lies with 
a certain degree of probability. For this report, a 95-percent 
confidence level is used. Assuming that the uncertainty of a 
radiological result is normally distributed, the 95-percent CI is 
defined by the measured concentration (C) plus or minus 1.96 
times the associated σ CSU for that measurement; that is,

	​​ [​C​ 𝓁​​, ​C​ u​​]​ ​ =  C ± 1.96 (1σ CSU)​,� (1)

where
	 Cℓ and Cu	 are the lower and upper limits of the CI, 

respectively.

The randomness of the measurement process for radionuclides 
makes negative values possible. A negative measured value, or 
negative lower limit on the CI, does not indicate that there is 
negative radioactivity.

Analysis and Interpretation of Replicate Data

The process of collecting and analyzing water samples 
from wells includes a number of steps that can affect how 
accurately samples represent the environment from which 
they were collected (Mueller and others, 2015, p. 1). Quality-
control data collected from replicate samples are used to 
estimate the magnitude of errors in the reported analyte 
concentrations and inform the selection of target analytes to be 
included in the network optimization analysis.

Replicate samples are defined as two or more environ-
mental samples collected sequentially in the same location. 
Replicate samples are used to measure the variability (as 
standard deviation) of constituent concentrations, which is 
defined as the random error in independent measurements as 
the result of repeated application of the measurement process 
under identical conditions (Mueller and others, 2015, p. 31). 
For many analytes, sampling variability is correlated with the 
concentration of that analyte, where variability increases with 
increasing concentration. A two-range model, as described 
by Mueller and Titus (2005) and Mueller and others (2015, 
p. 32–34), was used to evaluate the variability by estimating 
the standard deviation as a function of analyte concentration.

The two-range model is formulated using the mean 
concentration (C̅) and standard deviation (s ̄) of replicate-
paired data. For each of the n-replicate samples collected and 
analyzed for a constituent in the water-quality monitoring 
network, the mean replicate concentration is defined as:

	​​​    C ​​ i​​ ​ = ​
​C​ a,i​​ − ​C​ b,i​​

 _ 2 ​ ,   for i ​ =  1, … , n​,� (2)

where
	Ca,i and Cb,i	 are the constituent concentrations measured 

for in the two environmental samples that 
compose replicate pair i.

The computation of C̅i (eq. 2) is not possible if the con-
centration in either of the replicates is reported as a negative 
(only applies to radionuclides) or censored value. In this case, 
replicate pairs that include a negative or censored value were 
excluded from the analysis. For example, of the 106 sample-
replicate pairs analyzed for carbon tetrachloride (table 2), only 
21 were included in variability analysis (table 3). About 60 
percent of carbon tetrachloride measurements were reported as 
censored values (table 2). The mean replicate concentrations 
are sorted from smallest to largest and expressed as C̅[i], where 
the square brackets around the subscript indicate sorted values. 
The standard deviation of the ith replicate pair is defined by:

	​​ s​ i​​ ​ = ​ √ 
___________________________

   ​​(​C​ a, [i]​​ − ​​   C ​​ [i]​​)​​​ 2​ + ​​(​C​ b, [i]​​ − ​​   C ​​ [i]​​)​​​ 2​ ​​.� (3)

Replicate data are split into two subsets, a low concentration 
range and high concentration range. For concentrations in the 
low range, variability is estimated as the mean standard devia-
tion of replicates within that range (s ̄), and expressed as:

	​​    s ​ ​ = ​  1 _ ​n​ 1​​
​ ​ ∑ 
i=1

​ 
​n​ 1​​

 ​​s​ i​​​​.� (4)

where
	 n1	 is the number of replicates in the low range.
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Table 2.  Chemical constituents, organic compounds, and radionuclides measured for in water samples collected from wells in the U.S. 
Geological Survey aquifer water-quality monitoring network, Idaho National Laboratory and vicinity, Idaho, 1989–2018.

[Analyte name: U.S. Environmental Protection Agency Substance Registry Services (SRS) systematic name. Code: Unique identifier assigned by the U.S. 
Geological Survey. Period of record: For water samples collected during 1989–2018, in mm-dd-yy (month-day-year). Number of sampling sites: Number 
of locations where groundwater samples were collected and analyzed for the constituent. Number of observations: Number of laboratory measurements of a 
constituent concentration. Number of nondetects: Number of observations with left-censored values, where the real concentration is known to be less than a 
detection threshold. Number of replicate pairs: Number of sample-replicate pairs analyzed for a constituent]

Analyte name Code
Period of record 

(mm-dd-yy)

Number 
of 

sampling 
sites

Number of 
observations

Number of 
nondetects

Number 
of 

replicate 
pairs

Analyte group—Inorganics, Major, Metals

Sodium 00930 01-25-89 to 10-22-18 152 4,440 1 395
Analyte group—Inorganics, Major, Non-metals

Chloride 00940 01-04-89 to 10-23-18 153 6,372 0 548
Sulfate 00945 02-15-89 to 10-22-18 147 2,973 1 237
Fluoride 00950 02-15-89 to 10-01-18 136 609 45 36

Analyte group—Inorganics, Minor, Metals

Chromium 01030 01-25-89 to 10-18-18 139 2,866 485 256
Analyte group—Nutrient

Nitrate 00618 02-15-89 to 10-23-18 153 4,172 6 353
Analyte group—Organics, other

Dibromomethane 30217 02-19-92 to 12-12-18 70 1,352 1,351 90
Dichlorobromomethane 32101 01-04-89 to 12-12-18 119 1,663 1,646 99
Carbon tetrachloride 32102 01-04-89 to 12-12-18 119 1,723 1,029 106
Tribromomethane 32104 01-04-89 to 12-12-18 119 1,663 1,635 99
Chlorodibromomethane 32105 01-04-89 to 12-12-18 119 1,663 1,648 99
Chloroform 32106 01-04-89 to 12-12-18 119 1,663 1,096 99
Toluene 34010 01-04-89 to 12-12-18 119 1,723 1,672 106
Benzene 34030 01-04-89 to 12-12-18 119 1,723 1,722 106
Chlorobenzene 34301 01-04-89 to 12-12-18 119 1,699 1,699 103
Chloroethane 34311 01-04-89 to 12-12-18 109 1,608 1,608 96
Ethylbenzene 34371 01-04-89 to 12-12-18 119 1,723 1,720 106
Chloromethane 34418 01-04-89 to 12-12-18 119 1,642 1,642 99
Methylene chloride 34423 01-04-89 to 12-12-18 119 1,723 1,721 106
Tetrachloroethylene 34475 01-04-89 to 12-12-18 119 1,723 1,375 106
CFC-11 34488 01-04-89 to 12-12-18 109 1,689 1,689 103
1,1-Dichloroethane 34496 01-04-89 to 12-12-18 119 1,723 1,721 106
1,1-Dichloroethylene 34501 01-04-89 to 12-12-18 119 1,723 1,669 106
1,1,1-Trichloroethane 34506 01-04-89 to 12-12-18 119 1,723 981 106
1,1,2-Trichloroethane 34511 01-04-89 to 12-12-18 119 1,678 1,678 103
1,1,2,2-Tetrachloroethane 34516 01-04-89 to 12-12-18 109 1,668 1,668 103
o-Dichlorobenzene 34536 01-04-89 to 12-12-18 119 1,703 1,703 99
trans-1,2-Dichloroethylene 34546 01-04-89 to 12-12-18 119 1,723 1,723 106
1,2,4-Trichlorobenzene 34551 03-23-89 to 12-12-18 111 1,496 1,495 93
m-Dichlorobenzene 34566 01-04-89 to 12-12-18 109 1,669 1,669 96
CFC-12 34668 01-04-89 to 12-12-18 109 1,629 1,529 96
Naphthalene 34696 03-23-89 to 12-12-18 111 1,558 1,554 100
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Table 2.  Chemical constituents, organic compounds, and radionuclides measured for in water samples collected from wells in the U.S. 
Geological Survey aquifer water-quality monitoring network, Idaho National Laboratory and vicinity, Idaho, 1989–2018.—Continued

[Analyte name: U.S. Environmental Protection Agency Substance Registry Services (SRS) systematic name. Code: Unique identifier assigned by the U.S. 
Geological Survey. Period of record: For water samples collected during 1989–2018, in mm-dd-yy (month-day-year). Number of sampling sites: Number 
of locations where groundwater samples were collected and analyzed for the constituent. Number of observations: Number of laboratory measurements of a 
constituent concentration. Number of nondetects: Number of observations with left-censored values, where the real concentration is known to be less than a 
detection threshold. Number of replicate pairs: Number of sample-replicate pairs analyzed for a constituent]

Analyte name Code
Period of record 

(mm-dd-yy)

Number 
of 

sampling 
sites

Number of 
observations

Number of 
nondetects

Number 
of 

replicate 
pairs

Analyte group—Organics, other—Continued

Vinyl chloride 39175 01-04-89 to 12-12-18 119 1,723 1,723 106
Trichloroethylene 39180 01-04-89 to 12-12-18 119 1,723 1,082 106
Hexachlorobutadiene 39702 03-23-89 to 12-12-18 95 1,462 1,461 90
cis-1,2-Dichloroethylene 77093 02-19-92 to 12-12-18 90 1,467 1,467 100
Styrene 77128 01-04-89 to 12-12-18 119 1,663 1,657 99
1,1-Dichloropropene 77168 02-19-92 to 12-12-18 69 1,352 1,352 90
2,2-Dichloropropane 77170 02-19-92 to 12-12-18 69 1,352 1,352 90
1,2,4-Trimethylbenzene 77222 04-09-92 to 12-12-18 89 1,384 1,381 93
Cumene 77223 04-09-92 to 12-12-18 69 1,350 1,349 90
n-Propylbenzene 77224 04-09-92 to 12-12-18 89 1,384 1,384 93
1,3,5-Trimethylbenzene 77226 04-09-92 to 12-12-18 69 1,350 1,350 90
o-Chlorotoluene 77275 02-19-92 to 12-12-18 69 1,352 1,352 90
p-Chlorotoluene 77277 02-19-92 to 12-12-18 69 1,352 1,352 90
Halon 1011 77297 05-19-93 to 12-12-18 87 1,332 1,332 92
n-Butylbenzene 77342 04-09-92 to 12-12-18 69 1,350 1,350 90
sec-Butylbenzene 77350 04-09-92 to 12-12-18 89 1,384 1,384 93
tert-Butylbenzene 77353 04-09-92 to 12-12-18 69 1,350 1,350 90
p-Cymene 77356 04-09-92 to 12-12-18 69 1,350 1,350 90
1,1,1,2-Tetrachloroethane 77562 02-19-92 to 12-12-18 90 1,387 1,387 93
1,2,3-Trichlorobenzene 77613 04-09-92 to 12-12-18 69 1,350 1,349 90
CFC-113 77652 05-19-93 to 12-12-18 64 1,306 1,306 87
Methyl tert-butyl ether 78032 05-19-93 to 12-12-18 87 1,352 1,352 92
Xylene 81551 01-04-89 to 12-12-18 109 1,687 1,679 102
Bromobenzene 81555 02-19-92 to 12-12-18 69 1,352 1,352 90
TTHM4 90867 01-04-89 to 12-12-18 119 1,663 1,649 99

Analyte group—Organics, pesticide

1,2-Dichloroethane 32103 01-04-89 to 12-12-18 119 1,723 1,723 106
Acrylonitrile 34215 02-19-92 to 12-12-18 67 1,072 1,072 70
Methyl bromide 34413 01-04-89 to 12-12-18 119 1,642 1,642 99
1,2-Dichloropropane 34541 01-04-89 to 12-12-18 109 1,629 1,629 96
p-Dichlorobenzene 34571 01-04-89 to 12-12-18 119 1,703 1,702 99
trans-1,3-Dichloropropene 34699 01-04-89 to 12-12-18 119 1,642 1,642 99
cis-1,3-Dichloropropene 34704 01-04-89 to 12-12-18 119 1,642 1,642 99
1,3-Dichloropropane 77173 02-19-92 to 12-12-18 69 1,352 1,352 90
1,2,3-Trichloropropane 77443 02-19-92 to 12-12-18 70 1,353 1,353 90
Ethylene dibromide 77651 01-04-89 to 12-12-18 109 1,608 1,608 96
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Table 2.  Chemical constituents, organic compounds, and radionuclides measured for in water samples collected from wells in the U.S. 
Geological Survey aquifer water-quality monitoring network, Idaho National Laboratory and vicinity, Idaho, 1989–2018.—Continued

[Analyte name: U.S. Environmental Protection Agency Substance Registry Services (SRS) systematic name. Code: Unique identifier assigned by the U.S. 
Geological Survey. Period of record: For water samples collected during 1989–2018, in mm-dd-yy (month-day-year). Number of sampling sites: Number 
of locations where groundwater samples were collected and analyzed for the constituent. Number of observations: Number of laboratory measurements of a 
constituent concentration. Number of nondetects: Number of observations with left-censored values, where the real concentration is known to be less than a 
detection threshold. Number of replicate pairs: Number of sample-replicate pairs analyzed for a constituent]

Analyte name Code
Period of record 

(mm-dd-yy)

Number 
of 

sampling 
sites

Number of 
observations

Number of 
nondetects

Number 
of 

replicate 
pairs

Analyte group—Organics, pesticide—Continued

1,2-Dibromo-3-chloropropane 82625 02-19-92 to 12-12-18 70 1,353 1,353 90
Analyte group—Radiochemical

Tritium 07000 01-04-89 to 10-23-18 153 6,384 43 541
Strontium-90 13501 01-04-89 to 10-23-18 138 3,647 22 303
Plutonium-238 22012 01-04-89 to 10-22-18 118 962 0 70
Cesium-137 28401 01-04-89 to 10-22-18 137 2,762 14 241
Alpha particle 63018 04-07-08 to 10-18-18 77 749 0 53
Beta particle 80049 04-07-08 to 10-18-18 77 749 0 53
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Table 3.  Variability models for selected analytes estimated from replicate-paired sample data, U.S. Geological Survey aquifer 
water-quality monitoring network, Idaho National Laboratory and vicinity, Idaho, 1989–2018.

[Period of record: For water samples collected during 1989–2018, in mm-dd-yy (month-day-year). Number of sampling sites: Number of sites where one or 
more replicate samples were collected. Number of replicate pairs: Number of sample-replicate pairs analyzed for the constituent. For replicate pairs in which 
one or both values of the pair were censored, the pair was excluded from the variability analysis. Mean SD: Mean standard deviation of replicates. Mean RSD: 
Percent mean relative standard deviation of replicates. Abbreviations and symbols: mg/L, milligrams per liter; μg/L, micrograms per liter; pCi/L, picocuries 
per liter; N, Nitrogen; <, less than; ≥, greater than or equal to; ∞, infinity]

Analyte and units
Period of 

record 
(mm-dd-yy)

Number 
of 

sampling 
sites

Concentration 
range

Number 
of 

replicate 
pairs

Mean SD
Mean RSD 
(percent)

Sodium, mg/L 07-23-90 to 
10-11-18

140 <60
≥60

366
6

0.204
1.010

1.5
1.5

Chloride, mg/L 01-02-90 to 
10-11-18

144 <42
≥42

420
87

0.222
1.650

1.5
2.0

Sulfate, mg/L 10-01-90 to 
10-11-18

99 <47
≥47

227
6

0.149
1.640

0.5
1.3

Fluoride, mg/L 10-01-90 to 
10-03-17

21 -∞ to ∞ 31 0.008 4.1

Chromium, µg/L 10-01-90 to 
10-11-18

90 <24
≥24

188
6

0.443
3.090

6.3
2.2

Nitrate, mg/L as N 09-24-90 to 
10-11-18

132 <4.9
≥4.9

328
6

0.016
1.960

1.3
16.4

Carbon tetrachloride, µg/L 10-30-90 to 
10-12-16

6 -∞ to ∞ 21 0.043 1.7

Chloroform, µg/L 07-16-91 to 
10-12-16

5 <0.7
≥0.7

9
6

0.003
0.012

0.9
1.0

Toluene, µg/L 01-13-99 to 
04-17-13

4 -∞ to ∞ 5 0.040 13.7

Tetrachloroethylene, µg/L 01-13-99 to 
06-28-17

6 -∞ to ∞ 10 0.021 6.5

1,1-Dichloroethylene, µg/L 10-17-96 to 
10-03-17

4 -∞ to ∞ 5 0.001 2.1

1,1,1-Trichloroethane, µg/L 10-26-90 to 
10-12-16

14 -∞ to ∞ 31 0.007 3.6

CFC-12, µg/L 04-28-98 to 
04-17-13

4 -∞ to ∞ 6 0.008 5.5

Trichloroethylene, µg/L 10-30-90 to 
10-12-16

7 <2.2
≥2.2

14
7

0.004
0.038

1.1
1.4

Tritium, pCi/L 01-02-90 to 
10-04-18

117 <10,200
≥10,200

273
42

83.300
392.000

22.6
2.4

Strontium-90, pCi/L 01-02-90 to 
04-17-18

74 <38
≥38

164
6

0.792
9.890

36.8
18.7

Plutonium-238, pCi/L 10-30-90 to 
10-08-15

16 <0.01
≥0.01

12
8

0.002
0.008

48.1
65.4

Cesium-137, pCi/L 01-05-90 to 
04-11-18

70 <25
≥25

83
34

7.840
17.400

58.7
55.1

Alpha particle, pCi/L 04-07-08 to 
04-11-18

39 <4.3
≥4.3

32
7

1.220
2.980

65.5
55.4

Beta particle, pCi/L 04-07-08 to 
04-11-18

48 <6.5
≥6.5

45
6

0.711
1.730

29.1
18.4
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In the high concentration range, the two-range model 
assumes that the standard deviation linearly increases with 
concentration; the line of estimated standard deviation is 
described by a slope equal to the mean relative standard 
deviation (s ̄r) and intercept equal to zero. The s ̄r is calculated 
from replicated data in the high concentration range and 
expressed as:

	​​​    s ​​ r​​ ​ = ​   1 _ n − ​n​ 1​​
​ ​  ∑ 
i=​n​ 1​​+1

​ 
n
  ​​ 

​s​ i​​ _ ​​   C ​​ [i]​​
 ​​​,� (5)

where
	 n	 is the total number of replicates.

The two-range model describing the standard deviation as 
a function of constituent concentration is defined by:

	 		   ,� (6)

where
	 C̅ 

[k]	 is the mean concentration of replicate pair k 
and represents the boundary between the 
low-range and high-range concentrations.

Separating replicate data into low and high ranges of con-
centration was approached by identifying an abrupt structural 
change (breakpoint) in the variance (s2, the square of the stan-
dard deviation defined by eq. 3) of replicates sorted by their 
average concentration; the individual variances within each 
concentration range should be about equal. An optimal break-
point was calculated using the algorithm described by Bai and 
Perron (2003). Given n data points, the algorithm generates 
a piecewise constant sequence of line segments for each data 
subset. End points of the replicate-data subsets are defined in 
terms of their index position within the sorted mean replicate 
concentrations, and are expressed as {k0, k1, k2}={1, k, n}. 
Each line segment covers a concentration range and represents 
those data points by a constant value of variance. Consider the 
following two-segment piece wise constant function:

	​​ s​ i​ 
2​ ​ = ​ α​ j​​ + ​e​ i​​   for i ​ = ​ k​ j−1​​, … , ​k​ j​​  and  j ​ =  1, 2​,� (7)

where
	 αj	 is the constant value of variance within 

concentration range j, and
	 ei	 is the error at replicate pair i.

The constant values of variance and breakpoint k1 are 
estimated by minimizing the total fit error, which is stated in 
the following optimization formulation:

			   ,� (8)

where
	 	 is the set integers,
	 	 indicates that variance values are in the set of 

real numbers, and
	 nmin	 is the minimum number of replicate pairs in a 

concentration range.

For this study, a concentration range was required to have at 
least five replicate pairs. Once a breakpoint k1 has been deter-
mined, it is used to identify the boundary between low-range 
and high-range concentrations; that is, C̅[k] in equation 6. For 
some constituents, no breakpoint could be determined because 
the number of replicate pairs was too small to separate into 
low and high ranges of concentration, so C̅[k] was set equal to 
zero; that is, variability was estimated as the measured concen-
tration scaled by the mean relative standard deviation.

Two examples of the development of the two-range 
model using tritium and chromium concentrations are shown 
in figure 4. Replicate data were plotted as points and the stan-
dard deviations for all ranges of concentrations were plotted 
as lines. For tritium (fig. 4A), the variability of concentrations 
was estimated using 315 replicates collected from 117 wells. A 
boundary concentration of 10,200 pCi/L separates the con-
centration ranges, with replicate variances about equal within 
each range of concentration. The mean standard deviation in 
the low range of concentrations (83 pCi/L) is smaller than in 
the high range of concentrations (392 pCi/L). Standard devia-
tion is defined with more accuracy in the low range of con-
centrations because of the numerous replicates in this range 
(n=273). In comparison, the number of replicates in the high 
range of concentrations is relatively small (n=42). Variability 
of tritium was estimated at 83 pCi/L in the low range of con-
centrations, and 2.4 percent of the measured concentration in 
the high range (table 3).

Variability of chromium concentrations (fig. 4B) was 
estimated using 194 replicates collected from 85 wells. A 
boundary concentration of 24 µg/L separates the concentra-
tion ranges. The mean standard deviation in the low range of 
concentrations (0.443 µg/L) is smaller than in the high range 
of concentrations (3.090 µg/L) (table 3). Standard deviation 
is defined with more accuracy in the low range of concentra-
tions because of the large number of replicates in this range 
(n=188). In comparison, the number of replicates in the high 
range of concentrations is sparse (n=6) and indicates a poorly 
defined model in this range. Variability of chromium was esti-
mated at 0.443 µg/L in the low range of concentrations, and 
2.2 percent of the measured concentration in the high range 
(table 3).

s(C) =
s , for C <C[k ]

sr C, for C ≥C[k ]

⎧
⎨
⎪

⎩⎪

k1 = argmin
k1∈!
α1,α2∈!

α j − si
2( )2

i=k j−1

k j

∑
j=1

2

∑ ,

subject to: k j−1 − k j ≥ nmin

!

α1,α2∈!
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Figure 4.  Two-range model fitted to measurements of (A) tritium and (B) chromium in replicate-paired water samples collected 
from wells in the Idaho National Laboratory water-quality aquifer monitoring network, 1989–2018. n, number of replicates.

Two-range models for each of the selected constituents 
measured for in replicate samples collected from wells in 
the INL water-quality network, 1989–2018, are described in 
table 3 and shown in appendix 3. For sodium, chloride, sul-
fate, chromium, nitrate, chloroform, trichloroethylene, tritium, 
strontium-90, plutonium-238, cesium-137, alpha particle, and 
beta particle, the two-range model is defined by a piece wise 
constant function with two segments. These two-range models 
produce the smallest estimates of standard deviation within 
the low range of concentrations and the largest estimates 
within the high range of concentrations. For fluoride, carbon 
tetrachloride, toluene, tetrachloroethylene, 1,1-dichloroethyl-
ene, and 1,1,1-trichloroethane, the number of replicate pairs 
typically was too small to separate into low and high ranges of 
concentration. The variability of these pairs was modeled as a 
linear function. For all other analytes, insufficient uncensored-
replicate data (less than five replicate pairs) were available to 
establish a variability model. In this report, the absence of a 
variability model was the criterion used to exclude an analyte 

from further analysis. That is, analytes were excluded from 
analysis when there were insufficient quality-control data to 
evaluate the variability in analyte concentration.

Background Levels, Summary Statistics, and 
Maximum Contaminant Levels

Understanding the statistical behavior of pooled measure-
ments of concentration in groundwater is necessary for evalu-
ating the monitoring network. Summary statistics computed 
from the sample data were used to characterize the behavior 
of constituent measurements pooled together over space and 
time. Fixed regularity standards are given for each constituent 
to provide a point of reference for evaluating the value of an 
observation. For example, water-quality constituents detected 
well above background levels are among the most important 
to monitor because they may indicate groundwater contamina-
tion. Sampling sites that exceeded a drinking water maximum 
contaminant level for a constituent require long-term monitor-
ing to inform the public of potential health risks.
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Background concentrations are defined as groundwa-
ter influenced by western tributary recharge in the western 
INL and by eastern regional recharge in the eastern INL. 
Background concentrations are either naturally occurring or 
anthropogenic (substances present in the environment as a 
result of human activities) and are not influenced by waste and 
wastewater disposal at the INL. Background concentrations in 
groundwater at or near the INL were compiled from multiple 
USGS studies going back to 1989 and shown in table 4 for 
selected analytes.

Summary statistics of selected analytes during 
1989–2018 are shown in table 4, with radionuclides repre-
sented as a range of potential concentrations defined by the 
95-percent confidence interval of the measurement (eq. 1). The 
product limit method (Kaplan-Meier estimator) from survival 
analysis (Kaplan and Meier, 1958; She, 1997) was applied 
to the censored and uncensored concentrations to estimate 
the 25th percentile (lower quartile), median, mean, and 75th 
percentile (upper quartile). The uncertainty in the mean value 
was quantified using the standard error of the mean statistic 
(SEM) and expressed in table 4 as the measured concentration 
plus and minus the SEM. The minimum and maximum values 
were considered as the minimum and maximum concentration, 
with radionuclide concentrations expressed in table 4 as the 
measured value plus or minus the 1σ CSU.

The summary statistics for most analytes describe a con-
centration distribution that is positively skewed with the lower 
bound near zero and a span of two or more orders of magni-
tude. Great variation in concentrations and high skewness is 
typical of locally extreme values surrounded by much smaller 
values, such as in a groundwater contaminant plume. Waste-
disposal practices at the INL have created contaminant plumes 
of radiochemical and chemical constituents in the ESRP aqui-
fer. Agriculture and other anthropogenic influences upgradient 
from the INL also have created contaminant plumes in the 
aquifer (Bartholomay and others, 2017).

The maximum contaminant levels (MCLs), standards 
set by the U.S. Environmental Protection Agency for drink-
ing water quality, are shown for selected analytes in table 4. A 
missing MCL value indicates that there is no enforceable stan-
dard established for the analyte. The MCL was exceeded one 
or more times during 1989–2018 for the following analytes: 
chromium, nitrate, carbon tetrachloride, tritium, strontium-90, 
and alpha particle. Upper quartile concentrations however, 
never exceeded the MCL.

Table 5 shows the number of sampling sites, and per-
centage of the total number of sites, where an analyte was 
measured one or more times at a concentration greater than the 
laboratory reporting level (LRL), the upper limit of estimated 
background concentrations, and the MCL. Exceedance of 
the LRL indicates that one or more of the measured values 
were detected. Recall that nondetects (left-censored values) 
are reported as below the LRL, and the LRL may vary from 
sample to sample for the same analyte and the same analytical 
method. Carbon tetrachloride, chloroform, toluene, tetrachlo-
roethylene, and trichloroethylene were recorded at detectable 
concentrations in less than 10 percent of the 153 sampling 
sites, thus indicating limited informative data on the vari-
ability of these analytes in most of the sites in the monitoring 
network. The large number of nondetections for these analytes 
(table 2) and sparsity of sampling sites with detectable concen-
trations (table 5) can hinder their analysis.

The number of sampling sites where analytes were 
detected one or more times at concentrations above the upper 
limit of background ranged from as few as 5 of the 153 sam-
pling sites for 1,1-Dichloroethylene, to as many as 131 sites 
for tritium (table 5), whereby the number of sites implicitly 
indicates the historical extent of analyte contamination in the 
aquifer resulting from waste and wastewater disposal at the 
INL. For chloride, sulfate, chromium, tritium, strontium-90, 
and cesium-137, the groundwater affected by contamination 
is widespread, with concentrations exceeding background 
at more than 100 sampling sites (or more than two-thirds of 
the total number of sites in the network). Analytes with very 
few instances of background exceedance (such as fluo-
ride, carbon tetrachloride, chloroform, tetrachloroethylene, 
1,1-Dichloroethylene, trichloroethylene, and beta particle, 
with less than 20 occurrences each) can bias interpolation 
estimates because contaminant concentration fields are highly 
heterogeneous, with locally extreme values near the waste-
disposal sites surrounded by much smaller background values.

Measured concentrations for most analytes did not exceed 
their MCL for drinking water quality (tables 4 and 5).The 
number of sampling sites where analytes were detected at 
concentrations greater than the regulatory limit was relatively 
small for chromium (1 site), alpha particle (1 site), nitrate (2 
sites), and carbon tetrachloride (4 sites); in comparison, tritium 
(19 sites) and strontium-90 (21 sites) each exceeded the MCL 
in more than 10 percent of the total sampling sites. Sites with 
unsafe levels of contaminants at any point in time are impor-
tant because they may be used to trace a pollutant to its source 
and evaluate the effectiveness of cleanup efforts at the INL.
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Table 5.  Number of sampling sites where an analyte was measured one or more times at a concentration greater than the detection 
threshold, upper limit of background concentrations, and maximum contaminant level, U.S. Geological Survey aquifer water-quality 
monitoring network, Idaho National Laboratory and vicinity, Idaho, 1989–2018.

[Percentage of the total number of sampling sites in the monitoring network is italicized in parentheses. Abbreviations and symbol: LRL, laboratory reporting 
level; MCL, maximum contaminant level; –, MCL has not been established for the analyte]

Analyte name Exceeded LRL Exceeded background Exceeded MCL

  Sodium 151 (99) 64 (42) –
  Chloride 153 (100) 120 (78) –
  Sulfate 146 (95) 130 (85) –
  Fluoride 99 (65) 11 (7) 0 (0)
  Chromium 74 (48) 127 (83) 1 (1)
  Nitrate 148 (97) 94 (61) 2 (1)
  Carbon tetrachloride 10 (7) 11 (7) 4 (3)
  Chloroform 4 (3) 15 (10) 0 (0)
  Toluene 2 (1) 21 (14) 0 (0)
  Tetrachloroethylene 5 (3) 10 (7) 0 (0)
  1,1-Dichloroethylene 9 (6) 5 (3) 0 (0)
  1,1,1-Trichloroethane 24 (16) 30 (20) 0 (0)
  CFC-12 1 (1) 6 (4) –
  Trichloroethylene 10 (7) 9 (6) 0 (0)
  Tritium 127 (83) 131 (86) 19 (12)
  Strontium-90 131 (86) 123 (80) 21 (14)
  Plutonium-238 118 (77) 71 (46) –
  Cesium-137 133 (87) 127 (83) –
  Alpha particle 77 (50) 67 (44) 1 (1)
  Beta particle 77 (50) 17 (11) 0 (0)

Classification of Time-Series Data

The time-series analysis described in this report (such as 
temporal regression and iterative thinning) was constrained 
by the scarcity of time-series data on analyte concentrations. 
A sufficient amount of continuous reliable measurements is 
needed to capture both the natural and human-induced changes 
in water quality over time. To this end, strict inclusion-
exclusion criteria were defined to identify relevant data for 
time-series analysis. Water-quality data were classified by 
whether an observation was part of a continuous record block 
(Type-1 data), or not (Type-2 data). A continuous record block 
is assumed to be suitable for analysis and is defined as the 
longest period in the time series with (1) at least 15 observa-
tions, (2) a 5-year maximum time span between consecutive 
observations, and (3) a record period that is as least 15 years 
in duration. Three examples showing the classification of 

time-series data are presented in figure 5. For tritium in well 
USGS 20 (fig. 5A) and chromium in well USGS 38 (fig. 5B), 
all data reside in a continuous record block and, therefore, are 
classified as Type-1 data. By contrast, fluoride data in well 
USGS 15 (fig. 5C) are classified as Type-2 data because obser-
vations there span a 6-year period (1990–1995), well below 
the 15-year minimum duration for a continuous record block.

Time-series graphs with Type-1 and Type-2 data classi-
fication for selected constituents are shown in appendix 4. Of 
the 19 selected constituents analyzed for in water samples col-
lected from as many as 153 different sites during 1989–2018, 
there were a total of 2,413 time series, with 940 (39 percent) 
composed entirely of Type-1 data, 1,450 (60 percent) com-
posed entirely of Type-2 data, and 23 (1 percent) composed 
of both Type-1 and Type-2 data. Recall that Type-2 data were 
excluded from time-series analysis.
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A. Tritium in well USGS 20 (n = 51)

B. Chromium in well USGS 38 (n = 37)

C. Fluoride in well USGS 15 (n = 25)
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Figure 5.  Concentrations of (A) tritium in well USGS 20, (B) chromium in well USGS 38, and (C) fluoride in well USGS 15, 
Idaho National Laboratory, Idaho, 1989–2018. n, number of observations.
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Temporal Regression
Inherent in the collection of water-quality data over time 

is some form of random variation. There are many sources 
of variation that can affect changes in concentration, such 
as seasonal variability of groundwater chemistry resulting 
from infiltrating water reaching the water table, or variabil-
ity introduced during sampling, preservation, and handling. 
Regression analysis is used to exclude (or reduce) this random 
variation and show any underlying trend in the data. For this 
report, two types of regression techniques were used to model 
concentration as a function of time for each constituent-well 
pair: (1) nonparametric local regression, and (2) parametric 
survival regression. Nonparametric regression differs from 
parametric regression in that it does not make any underlying 
assumptions about the distribution of the data.

The two regression techniques complement each other 
because they each have their own distinctive strengths and 
weaknesses, whereby the weakness of one technique typically 
is offset by the strength of the other. Strengths of nonpara-
metric local regression include (1) fitting procedures that are 
very flexible and well suited for modeling complex structures 
within the data, and (2) a relative insensitivity to discrepant 
observations. Weaknesses include (1) results in a fitted model 
that cannot be expressed as a simple equation, (2) an inability 
to account for censored values (such as nondetection values), 
and (3) the use of a partially arbitrary hyperparameter to 
specify the desired degree of smoothness. A hyperparameter is 
a configuration variable that is external to the model and can-
not be directly estimated from the data (Brownlee, 2017).

Strengths of the survival regression technique include 
(1) results in a fitted model that describes the structure of the 
underlying data in an easily understood equation (long-term 
trends may be calculated from this equation), and (2) the 
ability to account for censored data. Weaknesses include (1) 
the required specification of a baseline distribution for the 
response variable (such as a log-normal distribution for con-
stituent concentrations); and (2) relative sensitivity to outli-
ers, discrepant observations, and patterns that may only exist 
within a limited subset of the data (Jacoby, 2000, p. 609–608). 
Survival regression also is not flexible enough to account for 
non-monotonic representation of change. Long-term water-
quality trends typically occur in two ways: (1) as a gradual 
change in concentration over time that is consistently in one 
direction (monotonic), or (2) as an abrupt change in concentra-
tion at a specific point in time (non-monotonic).

Local Regression Analysis

Local regression is an exploratory data-analysis tech-
nique that is useful for discovering various characteristics of 
a time series, such as long-term trend and seasonal compo-
nents. The general shape of a time series is made apparent by 
reducing the background variability or “noise,” such as the 
variability introduced to sample measurements because of 

field procedures and laboratory analysis. The local regression 
method LOESS was used to smooth the concentration time-
series data of a constituent measured for in water samples col-
lected from a monitoring well. In the context of the network 
optimization problem, LOESS also was used to formulate the 
objective functions for the spatial and temporal components of 
optimization.

LOESS, originally proposed by Cleveland (1979) and 
further developed by Cleveland and Devlin (1988), Cleveland 
and Grosse (1991), and Cleveland and others (1992a), is a 
nonparametric regression method (that is, it does not make any 
underlying assumptions about the distribution of the data) and 
implements a robust locally weighted regression procedure 
for fitting smooth functions to empirical data points. Low-
degree polynomial curves are fitted to localized subsets of the 
empirical data to develop a smooth function (also known as a 
“loess curve”) that describes the deterministic part (no random 
elements) of the variation in the observed data, point by point 
(Freeman and others, 2008, p. 50). A loess curve is formulated 
here to describe the relation between time and constituent 
concentration in single well.

Assume that for the ith observation in an unevenly spaced 
time series, the measured constituent concentration (Ci) and 
corresponding sample time (ti) are related by

	​​ C​ i​​ ​ =  g(​t​ i​​ ) + ​e​ i​​​,� (9)

where
	 g	 is a deterministic smooth function, and
	 ei	 is the random error of observation i.

Letting Ĉi be an estimate of g at sample time ti, equation 
9 is expressed for all observations as:

			   ,� (10)

where
	 Ĉ	 is the set of data points that describes the 

loess curve, and
	 n	 is the number of observations in the 

time series.

The first step in the LOESS procedure is to define m 
equally spaced times across the period of record. Denote 
these times as t̂j, where the subscript j ranges from 1 to m. The 
loess curve will be predicted at each t̂j; therefore, the temporal 
resolution of the loess curve is dependent on m. In this study, 
prediction points were equally spaced at monthly time inter-
vals over the period of record (1989–2018).

For each t̂j, LOESS performs a robust locally weighted 
linear regression analysis. These regressions are “local” in the 
sense that each one only uses the subset of observations that 
fall closest to the prediction point (these are observations in 
the neighborhood of t̂j) (Jacoby, 2000, p. 583). The proximity 
of observations to a predication point j is quantified using their 
time difference, defined as:

Ci = Ĉi + ei for i = 1,…,n
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	​​ Δ​ i​​(​​   t ​​ j​​ ) = ​|​t​ i​​ − ​​   t ​​ j​​|​  for i ​ =  1, … , n​,� (11)

where
	 Δi(t̂j)	 is the absolute time difference between 

observation i and prediction point j;
	 ti	 is the sampling time for observation i; and
	 t̂j	 is the time corresponding to prediction point j.

These time differences are then sorted from smallest to largest 
and expressed as Δ[i](t̂j), where the square brackets around the 
subscript indicate sorted values.

The proportion of observations to use in each local 
regression (p, also known as the smoothing parameter) con-
trols the degree of smoothing in the loess curve, with larger 
values of p tending to increase the smoothness of the loess 
curve. If p is too large, the curve is over-smoothed and the 
regression in unable to capture the underlying pattern of the 
data. If p is too small, an insufficient number of observations 
will occur near t̂j. resulting in a regression that captures the 
noise and the outliers in the data along with the underlying 
pattern. A version of the Akaike information criterion (AIC) 
that has a correction for small sample sizes (AICc) (Hurvich 
and others, 1998) was used to choose the smoothing parameter 
p that best fit the time-series data. The AICc is defined as

				    ,� (12)

where
	 H	 is the hat matrix (also known as the projection 

matrix) that describes the influence each Ci 
value has on each fitted value Ĉi, and

	 tr(H)	 is the trace of the hat matrix.

The best fitting value of p was determined by minimiz-
ing the value of AICc with values of p restricted to lie within 
the range of values from 0.2 to 0.9. Values of p less than 0.2 
tended to overfit the data in each subset and produce numeri-
cally unstable estimates. The minimization was solved using a 
combination of golden section search and successive parabolic 
interpolation (Brent, 1973).

The number of observations in a local regression (q) is 
defined as q=⎣pn⎦, where q is the rounded-down number to the 
nearest integer. This q value is used to identify the maximum 
time difference for observations in the local regression—the 
value located in the q position of the sorted time differences, 
Δ[q](t̂j). Thus, only observations whose time difference is less 
than or equal to this value, Δi(t̂j)≤Δ[q](t̂j), are included in the 
neighborhood around the focal t̂i. The LOESS method imple-
ments this neighborhood inclusion criterion by expressing the 
time difference as a proportion of the maximum time differ-
ence (d) and is expressed as

	​​ d​ i​​ ​ = ​ 
​Δ​ i​​(​​   t ​​ j​​)

 _ 
​Δ​ [q]​​(​​   t ​​ j​​)

​   for i ​ =  1, … , n​.� (13)

Then, di<1 is included in the local regression, and di≥1 is not.
Observations are inversely weighted according to their 

time difference. Weights are assigned to an observation based 
on the di value (eq. 13); this ensures that observations closer 
to the focal t̂j have greater influence over parameter estimates 
in the local regression model. Weights are defined using the 
tricube weight function, and defined as:

	​​ w​ i​​(​​   t ​​ j​​ ) = ​
{

​
​​[1 − ​d​ i​​ ​​​​ 

3​]​​​ 
3
​,
​ 

for  ​d​ i​​  <  1
​  

0,
​ 

for  ​d​ i​​  ≥  1
 ​​  and i ​ =  1, … , n​,�(14)

where
	 wi(t̂j)	 is the weight for observation i in the 

neighborhood of t̂j.

The weights are set to zero for observations located outside 
the local neighborhood.

Within a neighborhood of observations, a simple linear 
model is used to describe the statistical relationship between 
time (t) and constituent concentration (C). The linear regres-
sion model has the form:

				    ,� (15)

where
	 Ĉ(t)	 is the estimated value of constituent 

concentration at time t; and
	 αj and βj	 are the intercept and slope of a line, 

respectively.

The fitted values of αj and βj are determined using 
weighted least squares regression, which is stated in the fol-
lowing optimization formulation:

			              ,� (16)

where
	 	 is the set of real numbers.

Once the regression coefficients have been determined, 
they are used to calculate the vertical offsets (also known as 
“local residuals” and denoted as e) between the observation 
points and fitted line. The local residual is obtained by comb-
ing equations 10 and 15:

			              .� (17)

To reduce the impact of outlier data (points having large 
local residual values) on the regression equation (eq. 15), the 
residual of observation i is scaled by 6 times the median of the 
absolute value of the local residuals:

	​​ z​ i​​ ​ = ​ 
​e​ i​​ __________________  6 median​{​|​e​ 1​​|​, … , ​|​e​ n​​|​}​​​,� (18)

α j ,β j = argmin
α j ,β j∈!

wi(t̂ j ) Ci − α j + β j ti( )⎡
⎣

⎤
⎦
2

i=1

n

∑

AICc = ln
1
n

Ci − Ĉi( )
i=1

n

∑
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+1+

2 tr(H )+1⎡⎣ ⎤⎦
n− tr(H )− 2

Ĉ(t) = α j + β j t for t̂ j − Δ[q](t̂ j ) < t < t̂ j + Δ[q](t̂ j )

ei = Ci − Ĉi = Ci − α j + β j ti( ) for i = 1,…,n
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and used to calculate a robustness weight δi for each observa-
tion i as follows:

	​​ δ​ i​​ ​ = ​
{

​
​​[1 − ​z​ i​​ ​​​​ 

2​]​​​ 
2
​,
​ 

for ​|​z​ i​​|​  <  1
​  

0,
​ 

for ​|​z​ i​​|​  ≥  1
 ​​  for i ​ =  1, … , n​.� (19)

The robustness weights are set to zero for observations 
with a residual that is six times the median value (or about 4 
standard deviations). Local regression (eq. 16) is then repeated 
but with new weights equal to δiwi(tĵ).

The calculation of new weights (eqs. 16–19) is repeated 
four times to ensure that outlier data are excluded from the 
local regression. Once the final regression coefficients have 
been determined, they are substituted back into equation 15 to 
obtain a single predicted value on the loess curve evaluated at 
time t̂j. The steps for local regression (eqs. 12–19) are per-
formed for each of the m prediction points:

			         ,� (20)

and the difference between the highest and lowest predicated 
concentration ΔĈ is defined by:

			             .� (21)

Once the prediction points are calculated (eq. 20), the 
90-percent confidence intervals around the loess curve are 
determined. At each predicted point j, confidence limits are 
defined as:

			      ,� (22)

where
	 Ĉu,j, Ĉℓ,j	 are the upper and lower confidence limits for 

prediction point j, respectively;
	 α	 is the specified significance level (0 

through 1);
	 t*(1-α/2),v	 is the ​100(1 − α / 2)​ percentage point of the 

Student’s t distribution with v degrees of 
freedom; and

	 SE,j	 is the estimated standard error for 
prediction point j.

The significance level for a 90-percent confidence inter-
val is 10 percent, or α=0.1. The procedures for calculating 
v and SE,j values in equation 22 are beyond the scope of this 
investigation; however, a description of these procedures is 
available in Cleveland and others (1992b, p. 45–46).

Because LOESS relies on the local data structure when 
performing local fitting (eq. 15), a high density of observations 
is required to adequately smooth the data since large data gaps 
in an unevenly spaced time series can lead to highly mislead-
ing predictions and inferences. Distorting effects to the loess 
curve caused by infrequent sampling and a variable sampling 

rate were mitigated by omitting sample data lying outside a 
continuous record block (that is, the regression analysis was 
performed on Type 1 data, as described in section, “Sources 
and Descriptions of Data”). Because LOESS does not account 
for censored values, a substitution of one-half the reporting 
limit was made for nondetection values. This substitution 
can create an artificial trend, especially for those time-series 
datasets containing many censored values. For example, 
toluene concentrations in well EBR 1 prior to January 2004 
are reported as less than (<) 0.2 µg/L, and after as <0.1 µg/L. 
This change indicates enhanced detection of low concentra-
tions of toluene and results in an artificial decreasing trend as 
shown in appendix 5, fig. 5.13, p. 37. Water-quality data from 
groundwater samples collected on the same day were aver-
aged to better facilitate iterative thinning described in section, 
“Iterative Thinning.”

Two examples of the application of LOESS to smooth 
unevenly spaced time-series data are shown in figure 6. These 
include smoothing of tritium in well USGS 20 (fig. 6A) and 
chromium in well USGS 38 (fig. 6B). For concentration 
measurements of tritium in well USGS 20 (fig 5A) (n=51), 
replicate-paired data were collected on five unique sampling 
dates. After averaging measurements collected on the same 
day, 46 observations remained for local regression analysis 
(n=46). The observation points, calculated loess curve, and 
90-percent confidence intervals for tritium in well USGS 20 
are shown in figure 6A. The loess curve and its confidence 
intervals are represented as continuous functions—line seg-
ments are used to connect adjacent prediction points. The 
confidence band is defined as the area between the upper and 
lower confidence intervals. An analysis of the loess curve indi-
cates a long-term downtrend of tritium concentrations in the 
well. The narrow confidence band indicates low uncertainty in 
the local regression model.

For the 34 measurements of chromium concentration in 
well USGS 38 (fig. 5B) (n=37), replicate-paired data collected 
on three unique sampling dates were separately averaged, 
leaving 34 observations for local regression analysis (n=34). 
The observations, loess curve, and 90-percent confidence 
band for chromium in well USGS 38 are shown in figure 6B. 
The loess curve indicates a step increase in chromium con-
centration starting in about 2002 and ending in 2008, with 
concentrations remaining about constant before and after this 
step increase. The start of the step increase may be artificially 
delayed because of the substitution of one-half the report-
ing limit for the five censored values measured from 1999 
through 2003.

Time series graphs showing local temporal trends for 
selected constituents measured for in water samples from 
wells in the INL water-quality network, 1989–2018, are pre-
sented in appendix 5. The absence of a local-regression model 
for a constituent at a given well site may indicate that (1) the 
constituent was not measured for in water samples collected 
from this well, (2) a local-regression model could not be fit to 
the measured data, or (3) none of the concentration measure-
ments satisfy the conditions for a continuous record block 

Ĉ(t̂ j ) = α j + β j t̂ j , for j = 1,…,m

ΔĈ = max Ĉ1,…,Ĉm( ) -min Ĉ1,…,Ĉm( )

Ĉ
ℓ, j ,Ĉu, j⎡⎣ ⎤⎦ = Ĉ(t̂ j ) ± t(1−α 2),ν

∗ SE , j
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Year

2006 2008 2010 2012 2014 2016 2018

A. Tritium in well USGS 20 (n = 46, p = 0.44, ΔĈ = 10,422 pCi/L)

B. Chromium in well USGS 38 (n = 34, p = 0.37, ΔĈ = 12.25 μg/L)
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Loess curve fitted to observations
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Figure 6.  Local-regression model graphs fitted to observations of (A) tritium in well USGS 20 and (B) chromium in well 
USGS 38, Idaho National Laboratory, Idaho, 1989–2018. Water-quality data from groundwater samples collected on the same 
day were averaged. n, number of observations; p, smoothing parameter; ΔĈ​​, difference between the highest and lowest 
predicted concentrations; pCi/L, picocuries per liter; µg/L, micrograms per liter.

(that is, the time series is composed entirely of Type 2 data). 
For example, there is no loess curve for fluoride concentra-
tions in well USGS 15 because all measurements were identi-
fied as Type 2 data (fig. 5C).

Survival Regression Analysis

The survival regression model referred to as accelerated 
failure time (AFT) was used to perform a regression analysis 
on temporal observations of constituent concentrations in a 
well. In the context of the network optimization problem, AFT 
was used to formulate the objective function of the spatial 
optimization. Unlike ordinary linear regression models, sur-
vival methods correctly represent information from censored 
and uncensored observations in estimating regression param-
eters. With the presence of censored data, the AFT model 
(also known as the log-linear model) takes the form of a linear 
regression model with log-transformation of the response 
variable (constituent concentration) (Kalbfleisch and Prentice, 

2002, chapter 6). As a parametric method, AFT requires that 
concentration data approximately follow an assumed distri-
bution. A log-normal distribution was chosen for data in this 
report because most constituent concentrations have positive 
skewness, a lower bound of zero, and span two or more orders 
of magnitude. The AFT model is formulated here to describe 
the relation between time and constituent concentration in 
single well.

Assuming that for the ith observation in an unevenly 
spaced time series, the measured constituent concentration (Ci) 
and corresponding sample time (ti) are related by

	​ ln​(​C​ i​​)​ ​ =  ln​[ f​(​t​ i​​)​]​ + σ ​e​ i​​​,� (23)

where
	 f(ti)	 is the regression function evaluated at 

sample time ti;
	 σ	 is a regression coefficient called the scale 

parameter;
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	 ei	 is the random error in the log-transformed 
concentration of observation i; and

	 t	 is the sample time given as the number 
of days since January 1, 1970 (the 
Unix epoch).

A log-linear model is used to represent the regression 
function, expressed as:

	​ f​(t)​ ​ =  exp​(α + β t)​​,� (24)

where
	 exp	 is the exponential function; and
	 α and β	 are regression coefficients, respectively.

Combining equations 23 and 24, the AFT model may be 
specified as:

	​​
ln​(​C​ i​​)​ ​ =  ln​[exp​(α + β  ​t​ i​​)​]​ + σ ​e​ i​​​  

= α + β  ​t​ i​​ + σ ​e​ i​​
 ​​ .� (25)

By rearranging equation 25, the random error is expressed for 
n observations as:

	​​ e​ i​​ ​ = ​
ln​(​C​ i​​)​ − α − β  ​t​ i​​  _____________ σ  ​   for i ​ =  1, … , n​.� (26)

For the ith censored observation, the random error (ei in 
eq. 23) may be expressed in terms of the measurement’s confi-
dence limits. The upper limit of random error is defined as:

	​​ e​ u,i​​ ​ = ​
ln​(​C​ u,i​​)​ − α − β  ​t​ i​​

  ______________ σ  ​​,� (27)

and lower limit as:

	
​                     ​e​ 𝓁,i​​ ​ = ​

⎧
 

⎪

 ⎨ 
⎪

 
⎩

​​
ln​(​C​ 𝓁,i​​)​ − α − β  ​t​ i​​

  _______________ σ  ​,​  for  ​δ​ i​​ ​ =  1​  
− ∞  ,

​ 
for  ​δ​ i​​ ​ =  0

​​​.� (28)

where
	 δi	 is the event indicator for the ith observation 

with δi=1 if the observation is interval 
censored, and δi=0 if the observation is left 
censored.

For the infinite lower bound of left-censored observations, 
logarithms of concentration map into a lower bound of zero 
for the retransformed, original concentration units (Helsel, 
2005, p. 202).

The likelihood function (L) defines the likelihood of 
matching the observed distribution of censored data, and is 
expressed for n observations as:

	
                  ​L ​ = ​ ∏ 

i=1
​ 

n
 ​​​{Φ​[​e​ u,i​​]​}​​​ 1−​δ​ i​​​ ​​{Φ​[​e​ u,i​​]​ − Φ​[​e​ 𝓁,i​​]​}​​​ ​δ​ i​​​​​,� (29)

where
	 Φ(e)	 is the standard normal cumulative distribution 

function of the random error.

A larger value of L indicates an improved fit between the 
estimated distribution and the observed data. The best fit is 
determined by choosing values α, β, and σ that maximize L, 
which is stated in the following optimization formulation:

				       .� (30)

The optimization (eq. 30) is solved by setting the partial 
derivative of the logarithm of L (eq. 29) with respect to 
each of the regression coefficients equal to zero and using a 
Newton-Raphson method to iteratively approximate a solu-
tion. Once the regression coefficients have been determined, 
they are substituted back into equation 24 to describe a best-fit 
smooth curve for the data and a long-term monotonic trend (Δ) 
estimated for the smooth curve as:

	​ Δ ​ =  100​[exp​(β)​ − 1]​365.24​,� (31)

where
	 Δ	 is expressed as a percent change per year, with 

negative values indicating a monotonic 
decrease in concentration over time.

The predictive strength of the survival regression model 
was assessed using the McKelvey and Zavoina (1975) pseudo-
coefficient of determination (R2) statistic, which attempts to 
describe the proportion of variance explained by the model 
fit and tries to capture the square of the correlation between 
the fitted and actual values. Pseudo-R2 ranges from 0 to 1, 
with higher values indicating better model fit. Unlike the R2 
generated for ordinary least squares regression, the pseudo-
R2 statistic cannot be interpreted independently or compared 
among time-series datasets. The statistic’s usefulness is limited 
to comparing competing models for the same data.

The p-value for each regression coefficient (α, β, and σ in 
eq. 25) was used to evaluate the strength of evidence against 
the null hypothesis, which states that there is no correlation 
between the coefficient and response variable (Moore and 
McCabe, 2003), C. If the p-value is less than or equal to a 
p-value tolerance (called a significance level), the null hypoth-
esis is rejected; that is, the coefficient likely is significant in 
the model because changes in the coefficient likely are related 
to changes in the response variable. Conversely, when the 

α ,β = argmax
α ,β ,σ∈!

Φ
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p-value is greater than the significance level, the changes in 
the coefficient likely are unrelated to changes in the response 
variable. A significance level of 0.05 was selected for this 
report because of its traditional usage (Nuzzo, 2014), and a 
regression model with a coefficient p-value greater than 0.05 
was omitted. The p-value for the overall significance of the 
survival regression model was used to determine whether the 
entire model being tested was an improvement over no model 
at all (Helsel, 2005, p. 203).

Infrequent sampling and a variable sampling rate may 
result in biased regression coefficients. To mitigate this bias, 
sample data lying outside a continuous record block were 
omitted from the regression analysis (that is, the regression 
analysis was performed on Type 1 data, as described in sec-
tion, “Sources and Descriptions of Data”).

Because concentrations may be censored in survival anal-
ysis, a nondetect concentration is represented as left-censored 
data, and a 95-percent confidence interval about a measured 
radiological concentration is represented as interval-censored 
data. For example, consider a measured concentration of 50 
pCi/L for tritium. The combined standard uncertainty associ-
ated with this measurement was reported by the laboratory as 
100 pCi/L. The 95-percent confidence interval is then calcu-
lated from equation 1 as:

	​​
​[​C​ 𝓁​​, ​C​ u​​]​ ​ =  50 pCi/L ± 1.96 ​(100 pCi/L)​

​   
= ​[− 146 pCi/L,  246 pCi/L]​

 ​​ .� (32)

Thus, the concentration measurement of tritium is repre-
sented as interval-censored data, with the true concentration 
estimated with 95-percent confidence to be in the range of 
-146–246 pCi/L.

The log-transformation of the response variable in the 
AFT model [ln(Ci) in eq. 23] requires concentration values 
to be greater than zero. This is because logarithms are not 
defined for zero and negative numbers. To ensure that all 
values are greater than zero, the radiological data were cen-
sored using the detection limit (DL); that is, values reported 

as negative values were changed to less than the DL. The DL 
is based on instrument sensitivity, sample volumes, analytical 
procedures, and counting times used in the laboratory. DLs are 
available from the analyzing laboratory and were reported for 
selected types of radionuclides by Bodnar and Percival (1982), 
Bartholomay and others (2003, table 9), and Bartholomay and 
others (2014, table D1). The DLs shown in table 6 represent 
typical values—on rare occasions, special arrangements were 
made to achieve smaller detection limits. Censoring the nega-
tive values may obscure some of the underlying trends in the 
observed data.

For cases where the upper limit of the 95-percent CI was 
less than the DL for a particular radionuclide, the concentra-
tion range was censored to be less than the DL. When the DL 
was between the upper and lower limits of the 95-percent CI, 
the concentration range was censored to be less than the upper 
limit. For example, given a 200 pCi/L DL for tritium (table 6), 
the 95-percent CI as calculated from equation 32, [-146 pCi/L, 
246 pCi/L], is censored to be less than 246 pCi/L. The con-
centration range remains unchanged for cases where the lower 
limit was greater than or equal to the DL, or the radiological 
concentration is reported as a nondetection. The censoring cri-
teria for radionuclides is mathematically expressed as follows:

� (33)

For most constituents in this report, concentrations in the 
survival-regression analysis are represented as an interval of 
uncertainty in the reported measurement. The effect of includ-
ing this uncertainty in the trend analysis was a reduction in the 
trend-detection rate, thereby, helping to avoid invalid conclu-
sions on the presence or absence of trends.

Two examples of the application of survival regres-
sion analysis to smooth unevenly spaced time-series data 
are shown in figure 7. These include a regression analysis 

C =

< DL, for C + 1.96 CSU < DL

< C + 1.96 CSU, for C − 1.96 CSU < DL < C + 1.96 CSU

C ± 1.96 CSU, for C − 1.96 CSU ≥ DL

< C , for nondetection

⎧

⎨
⎪
⎪

⎩
⎪
⎪

Table 6.  Analytical method detection limits of selected radionuclides.

[Effective period: Period during which the detection limit was in effect (1989–2018), in mm-dd-yy (month-day-year). Detection limit: Based on instrument 
sensitivity, sample volumes, analytical procedures, and counting times used in the laboratory. pCi/L, picocuries per liter]

Analyte name
Effective period 

(mm-dd-yy)
Detection limit 

(pCi/L)
Reference

Tritium 01-01-89 to 03-31-03 500 Bartholomay and others (2003, table 9)
04-01-03 to 12-31-18 200 Bartholomay and others (2014, table D1)

Strontium-90 01-01-89 to 07-30-98 5 Bodnar and Percival (1982)
07-31-98 to 12-31-18 2 Bartholomay and others (2014, table D1)

Plutonium-238 01-01-89 to 12-31-18 0.2 Bartholomay and others (2014, table D1)
Cesium-137 01-01-89 to 12-31-18 60 Bartholomay and others (2014, table D1)
Alpha particle 01-01-89 to 12-31-18 3 Bartholomay and others (2014, table D1)
Beta particle 01-01-89 to 12-31-18 2 Bartholomay and others (2014, table D1)
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of tritium in well USGS 20 (fig. 7A) and chromium in well 
USGS 38 (fig. 7B). The 51 observations (n=51) of measured 
concentrations represented with their 95-percent uncertainty 
as interval-censored data are shown in figure 7A. The survival 
regression model is shown as a smooth curve (fig. 7A) and 
is based on estimated regression coefficients of α=10.49 and 
β = -1.61×10-4. Substituting these coefficient estimates into the 
survival regression function (eq. 24) gives:

	​ f​(t)​ ​ =  exp​(10.49 − 1.61 × ​10​​ −4​  t)​​.� (34)

Thus, on January 1, 2000 (a calendar date represented by 
the number of days since January 1, 1970, or t=10,957), the 
predicted tritium concentration based on regression analysis 
was 6,160 pCi/L. Substituting -1.61×10-4 for β in equation 31 
gives the long-term monotonic trend (Δ) for tritium in well 
USGS 20 as:

         ​Δ ​ =  100​[exp​(− 1.61 × ​10​​ −4​)​ − 1]​365.24 ​ =  − 5.9​,� (35)

which indicates a 5.9 percent reduction in tritium concentra-
tion per year.

For the 37 measurements of chromium concentration in 
well USGS 38 (fig. 7B), 32 observations were reported with-
out uncertainty and were represented as exact detections, and 
5 observations were reported as nondetections and were rep-
resented as left-censored data. The censored and uncensored 
observations of chromium in well USGS 38 are shown in fig-
ure 7B, along with the fitted survival regression model and the 
95-percent prediction band for the fitted survival regression 
model. The smooth curve indicates an increase in chromium 
concentration over time, with a long-term monotonic trend of 
5.0 percent change per year.

Fitted survival regression models for selected constituents 
measured for in water samples collected from wells in the INL 
water-quality network, 1989–2018, are described in  
appendix 6 and shown in appendix 7. The absence of a sur-
vival regression model for a constituent at a given well site 
may indicate that (1) the constituent was not measured for 
in water samples collected from this well, or (2) a survival 

1990 1992 1994 1996 1998 2000 2002 2004
Year

2006 2008 2010 2012 2014 2016 2018

A. Tritium in well USGS 20 (n = 51, Δ = −5.9 percent change per year)

B. Chromium in well USGS 38 (n = 37, Δ = 5.0 percent change per year)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

Tr
iti

um
, i

n 
pi

co
cu

rie
s 

pe
r l

ite
r

0

5

10

15

20

25

Ch
ro

m
iu

m
, i

n 
m

ic
ro

gr
am

s 
pe

r l
ite

r

EXPLANATION
Type-1 exact detection
Type-1 range of detection
Type-1 nondetection
Survival regression model

95-percent confidence band

Figure 7.  Survival regression function model with measurements of (A) tritium in well USGS 20 and (B) chromium in well 
USGS 38, Idaho National Laboratory, Idaho, 1989–2018. n, number of observations; Δ, long-term monotonic trend in percent 
changes in concentration per year.
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regression model could not be fit to the measured data or was 
omitted because of a large p-value, or (3) none of the con-
centration measurements satisfy the conditions for a con-
tinuous record block (that is, the time series is composed of 
Type 2 data).

A visual inspection of regression models indicates an 
adequate model fit to their observed data values for most 
constituent-well pairs. The few exceptions of poor model fit 
occurred when there was an abrupt change in concentration at 
a specific point in time (non-monotonic characteristics). For 
example, a relatively late arrival time for groundwater con-
tamination in well USGS 120—in comparison to other wells 
in the monitoring network—resulted in peak concentrations 
occurring during the 1999 calendar year for most constituents 
measured for in water samples collected from that well. This 
abrupt change in concentration is not represented by the model 
and indicates the inability of the regression model to account 
for non-monotonic representations of change. The sensitivity 
of the spatial optimization results to these rare occurrences 
of poor survival-regression model fit was not explored in 
this report.

Spatial Interpolation
The geostatistical technique known as kriging is used 

to interpolate the concentration for a particular constituent at 
unmeasured locations in the ESRP aquifer beneath the INL 
and vicinity. Snyder (2008, p. 19) describes kriging as a type 
of spatial moving average, where the value at an unmeasured 
location is estimated as a weighted average of the measured 
values. The weights assigned to the measured values depend 
on spatial trends and possible correlations in the data (Bossong 
and others, 1999, p. 4). Correlation between measurements 
at two sampling sites is assumed to depend on the separa-
tion distance between the two sites. Any depth dependencies 
among measurements acquired at isolated depths in the same 
MLMS-equipped well are ignored. For this report, concentra-
tions were depth-averaged to provide the data necessary for 
two-dimensional kriging. Any bias introduced by depth aver-
aging was assumed negligible because of the small number of 
wells (about 7 percent) equipped with a MLMS in the existing 
monitoring network.

Sampling sites that are close together typically have a 
smaller difference in measured values than those farther apart. 
The degree of spatial correlation is quantified with the sample 
variogram, which measures correlation between measurements 
as a function of distance between the sampling points. Kriging 
computes an estimate best representing the spatial distribution 
of the observed values based on a theoretical variogram model 
that is fitted to the sample variogram and a minimization of 
the estimation variance (a measure of uncertainty) at measured 
locations.

Kriging was used to estimate the areal distribution of 
the time-averaged concentrations for selected constituents. 
Predicted concentrations were calculated on a regular grid of 
0.31-by-0.31 mi (or 0.5-by-0.5 km) resolution across the land 
surface area defined by a generalization of the convex hull of 
the monitoring wells. The average separation distance between 
pairs of monitoring wells was 1.7 km, with only 86 of the 
8,778 possible combinations of well pairs separated by less 
than 0.5 km. Temporal variability was eliminated by averag-
ing the measured concentrations of a constituent in a well 
during 1989–2018. That is, for the ith monitoring well in the 
network, the time-averaged concentration for a constituent (​​   C ​​) 
is defined as:

	​​​    C ​​ i​​ ​ = ​  1 _ ​m​ i​​
​ ​ ∑ 
j=1

​ 
​m​ i​​

 ​C​(​s​ i​​, ​t​ j​​)​​  for i ​ =  1, … , n​,� (36)

where
	 si	 is a pair of Cartesian coordinates describing 

the geographic location (point) of well i;
	 tj	 is the sampling time for observation j;
	 C(si, tj)	 is the measured concentration at point si and 

sample time tj;
	 mi	 is the number of observations in well i; and
	 n	 is the number of wells in the 

monitoring network.

A boldface algebraic symbol (such as s in eq. 36) is used to 
denote a vector quantity.

The method of time averaging was selected solely for 
addressing the problem of estimating the spatial distribu-
tion of constituent concentrations at a single snapshot in time 
with observations that are (1) limited in number and sparsely 
distributed, both spatially and temporally in the monitoring 
domain; and (2) often reported as a nondetection or back-
ground concentration value. Kriging models developed for 
predicting spatially smoothed and temporally averaged con-
stituent concentration likely will not be successful in predict-
ing observations that are spatially localized and time-varying. 
However, these models can capture the aggregate plume 
behavior and can be useful for estimating the occurrence 
and spatial extent of a constituent in the ESRP aquifer at and 
near the INL.

For many of the constituents, the areal distribution of 
time-averaged concentrations can be characterized by locally 
extreme values near the waste-disposal sites, surrounded by 
much smaller background or nondetection values. Because 
kriging estimators are sensitive to a small number of large data 
values, the highly asymmetric empirical distribution of data 
may significantly bias kriging estimates.

Quantile kriging (QK) is a transformation-based kriging 
approach that preserves the relative ranks and spatial structure 
of data while addressing estimation inaccuracies caused by a 
skewed distribution (Juang and others, 2001). The approach 
originally was proposed by Journel and Deutsch (1997) for 
integrating diverse data types, and Reed and others (2004) 
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reported that it was well-suited for plume interpolation. QK is 
formulated here to describe the estimated concentration distri-
bution of a constituent in the study area, and the uncertainty 
(or error) associated with these kriging predictions.

Because the kriging method does not account for cen-
sored values, a substitution of zero was made for nondetection 
concentration values. This substitution can result in a distorted 
model of spatial distribution, especially for analytes contain-
ing many censored values (such as carbon tetrachloride, 
1,1-dichlorothylene, 1,1,1-trichloroethane, and trichloroeth-
ylene). However, in such cases, censored values typically are 
representative of background concentrations, so the substitu-
tion of zero has little effect on the predicted concentration 
distribution of a contaminant plume.

Transformation

The averaged concentrations (C̅ in eq. 36) were trans-
formed into standardized ranks (or quantiles) (z) to produce 
data that are uniformly distributed on the interval from 0 to 1. 
That is, the non-linear data transformation changes the shape 
of the original data distribution into a uniform distribution. 
The transformation was performed using the empirical distri-
bution function (EDF) associated with the averaged concentra-
tion sorted from smallest to largest and was denoted as C̅[i], 
where square brackets around the subscript indicated sorted 
values. The EDF is mathematically expressed as:

	​​ z​ i​​ ​ = ​ 1 _ n​ ​ ∑ 
j=1

​ 
n
 ​​
{

​
1,

​ 
for  ​​   C ​​ [j]​​  ≤ ​​    C ​​ [i]​​

​  
0,

​ 
for  ​​   C ​​ [j]​​  > ​​    C ​​ [i]​​

​​  for i ​ =  1, … , n​​,� (37)

where
	 n	 is the number of time-averaged 

concentrations.

Spatial interpolation is then performed on the standard-
ized ranks using ordinary kriging (OK) and the predicted 
values at unmeasured locations are back-transformed into 
concentration space.

Variograms

Kriging predictors require estimates of the degree of 
spatial correlation between values of standardized rank (z) 
separated by different distances (h). The separation distance 
(or Euclidian distance) between any two points (si and sj) is 
defined as:

	​​ h​ ij​​ ​ = ​ ‖​s​ i​​ − ​s​ j​​‖​ ​ = ​ √ 
________________

  ​​(​x​ i​​ − ​x​ j​​)​​​ 
2​ + ​​(​y​ i​​ − ​y​ j​​)​​​ 

2​ ​​,� (38)

where
	 x and y	 are the easting and northing coordinates, 

respectively.

The variogram may be used to estimate the degree of spa-
tial correlation present in the data. Because the true variogram 
can never be known, a nonparametric estimate of the vario-
gram is made using the sample variogram γ̃ and computed by 
averaging variance values γ(h) that are in a given h interval 
(or lag bin). That is, the squared difference in transformed 
concentrations (z values calculated in eq. 37) is averaged for 
well pairs separated by a distance that is contained with the 
same lag bin. Assuming the variance is isotropic with respect 
to different directions in the areal plain, the sample variogram 
is defined as:

	​​ 

​​   γ ​​ k​​ ​ = ​   1 ___________ 
2​|N​(​​   h ​​ k​​ ± δ)​|​​ ​  ∑ 

​(i,j)​∈N​(​​   h ​​ k​​±δ)​
​​​​(​z​ i​​ − ​z​ j​​)​​​ 

2​​

​    let N​(​​   h ​​ k​​ ± δ)​  ≡ ​
{

​
​ ​(​s​ i​​, ​s​ j​​)​​|​​ ​​   h ​​ k​​ − δ  ≤ ​ h​ ij​​  < ​​    h ​​ k​​ + δ ​

​   
  for i, j ​ =  1, … , n and i  ≠  j

  ​
}

​​    

and  ​​   h ​​ k​​ ​ = ​ d​(k − 0.5)​ _ ​n​ b​​
 ​ ,   for k ​ =  1, … , ​n​ b​​

 ​​ ,�(39)

where
	 h̃k	 is the lag distance coinciding with the 

midpoint of lag bin k,
	 δ	 is half of the lag bin width,
	 |N(h̃k±δ)|	 is the number of data pairs in lag bin k,
	 d	 is the separation distance to which point pairs 

are included in the variance estimates, and
	 nb	 is the total number bins.

As a rule of thumb, separation distance (d in eq. 39) typi-
cally is limited to no more than one-half the maximum separa-
tion distance between any two points (Rossi and others, 1992) 
and each lag bin has at least 30 data pairs (Cressie, 1993). In 
this report, d was specified at one-half the separation distance 
between any two monitoring wells, or about 10 mi, a distance 
subdivided into 20 equal-width bins. Each lag bin is 0.5 mi 
wide with the number of data pairs within each bin ranging 
from 107 to 338.

The sample variogram is modeled with a covariance 
function that represents a theoretical variogram γ(h) and 
provides variance values at any given lag distance. The 
mathematical function used in this study to describe spatial 
variability is the Matérn model (Matérn, 1960; Stein 1999), 
which provides more flexibility in modeling the smoothness of 
the covariance function, as compared with the other possibili-
ties for the function (such as the spherical model), and it can 
model many local spatial processes (Minasny and McBratney, 
2005). The Matérn variogram model is defined as:

�
(40)γ h( ) =

0, for h = 0

g + s − g( ) 1−
21−v

Γ v( )
h

ρ
⎛
⎝⎜

⎞
⎠⎟
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K
v

h

ρ
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⎠⎟

⎡

⎣
⎢
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⎤

⎦
⎥
⎥

, for h > 0

⎧

⎨
⎪⎪

⎩
⎪
⎪



Spatial Interpolation    33

where
	g, s, ρ, and v	 represent the nugget effect, sill, range, 

and shape of the variogram model, 
respectively.

The nugget effect g is the jump in the variance at the 
origin (the variance is always zero at h=0), which may be 
attributed to measurement errors and (or) sources of varia-
tion at a scale smaller than the separation distance between 
wells (Clark, 2010). The sill s is the variance when the model 
either reaches or becomes asymptotic to a constant value as 
lag distance increases. The range ρ controls the rate of increase 
with distance, and the shape parameter v controls the smooth-
ness (or continuity) of the random field that models the spatial 
variability of the observed data. A v value of 0.5 results in the 
exponential variogram, whereas a value of infinity is exactly 
the Gaussian variogram.

Functions Г(v) and Kv(h / ρ) in equation 40 are known 
as the gamma function and modified Bessel function, 
respectively. The gamma function is defined for v greater 
than zero as:

	​ Γ​(v)​ ​ = ​  ∫ 
0
​ 
∞
​​x​​ v−1​ exp (− x )  dx​​.� (41)

The modified Bessel function is of the third kind, of order v, 
and exponentially scaled is expressed as:

	​​ K​ v​​​(x)​ ​ = ​ π _ 2 ​​[​
​I​ −v​​​(x)​ − ​I​ v​​​(x)​

 _ sin​(πx)​ ​ ]​exp​(x)​​,� (42)

where
	 x	 is h / ρ.

The function Iv(x) in equation 42 is the modified Bessel func-
tion of the first kind; that is, defined by:

	​​ I​ v​​​(x)​ ​ = ​​ (​x _ v​)​​​ 
v
​ ​ ∑ 
k=0

​ 
∞
 ​​  1 ___________ k ! Γ​(v + k + 1)​ ​​ ​​(​ x _ 2​)​​​ 

2k
​​.� (43)

Fitted parameter values of g, s, and ρ in equation 40 were 
noted for a number of realizations of the shape parameter v, 
specifically v={0.1, 0.2, …, 9.9, 10}, to explore a wide range 
of possible variograms. For each realization of v, parameters 
g, s, and ρ were calculated by minimizing the weighted sum of 
squared errors (SSE) between the sample variogram γ̃(h̃) and 
theoretical variogram γ(h) evaluated at lag distances h̃; that is:

				        ,� (44)

where
	 wk	 is the weight of the kth point in the sample 

variogram expressed as the number of data 
pairs in the bin divided by the square of its 
lag distance, or:

	​​ w​ k​​ ​ = ​
​|N​(​​   h ​​ k​​ ± δ)​|​

 _ 
​​   h ​​ k​ 

2​
 ​​ .� (45)

The optimization (eq. 44) is solved by iteratively 
reweighted least squares (Cressie, 1985). Once the fitted 
parameters have been determined for each realization of v, 
they are substituted back into equation 40 to describe a set 
of fitted variogram models. A leave-one-out cross validation 
(LOOCV) method was used to choose the best-fitted vario-
gram model from the set of candidate models. The LOOCV 
method ascertains the predictive performance of the variogram 
models using the minimum root-mean-square error (RMSE; 
described in section, “Kriging”).

Because the physical meaning of the range parameter 
ρ is difficult to interpret in the Matérn model, an estimate is 
made of the separation distance after which pairs of points are 
no longer spatially correlated. The estimate is made using the 
effective range (r), the distance at which the variance value 
achieves 95 percent of the sill. The Matérn model only asymp-
totically reaches the sill. The effective range was determined 
by minimizing the absolute difference between the variogram 
model evaluated at a distance r and 95 percent of the sill s, and 
is expressed as:

			   .� (46)

The optimization (eq. 44) was solved using a combination of 
golden section search and successive parabolic interpolation 
(Brent, 1973).

The SSE statistic calculated in equation 44 cannot be 
interpreted independently or compared among constituent 
datasets; that is, its usefulness is limited to comparing compet-
ing models for the same data. Therefore, to compare among 
constituents how well the sample variogram is replicated by 
the theoretical variogram, R2 was calculated for each con-
stituent. The R2 statistic for a model fitted by weighted least 
squares regression (R2

wls) may be expressed as:

	​​ R​ wls​ 
2 ​ ​  =  1 − ​  SSE  _______________________   

​ ∑ 
k=1

​ 
n
  ​​w​ k​​ ​​[γ​(​​   h ​​ k​​)​ − ​ 

​∑ i=1​ 
n  ​ ​w​ i​​ γ​(​​   h ​​ i​​)​​

 _ ​∑ i=1​ 
n  ​ ​w​ i​​​

 ​ ]​​​ 
2

​​

​​.� (47)

The R2
wls normally ranges from 0 to 1, where a value 

of 1 indicates that the regression predictions perfectly fit the 
sample variogram. Models were rejected when their R2

wls 

g,s,ρ = argmin
g ,s,ρ∈!

wk "γ !hk( ) − γ !hk ; g,s,ρ,v( )⎡⎣ ⎤⎦
2

k=1

nb

∑
subject to: 0 < g < s; s > 0; ρ > 0 

r = argmin
r∈!

γ r( ) − 0.95s

subject to: 0 < r < 50ρ +1 
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value was less than 0.05, which implies that 95 percent of 
the variability of the semivariance in the sample variogram is 
unaccounted for by the model.

The sample variogram and fitted variogram model for 
tritium based on the time- and depth-averaged measurements 
in 133 monitoring wells are shown in figure 8. Of the 8,778 
combinations of well pairs, 5,036 (57 percent) are separated 
by a distance of less than 10 mi and are included in the vario-
gram analysis (fig. 8A). Estimates of variance between values 
of transformed tritium separated by different lag distances 
are allocated into 20 lag bins and averaged within each bin. 
The averaged values are plotted as point symbols at each 
of the midpoint lag-bin distances and collectively describe 

the sample variogram (fig. 8B). Numbers next to the point 
symbols refer to the number of sampled data pairs in a lag bin. 
The variogram model fitted to the sample variogram is drawn 
as a smooth curve and shows variance initially increasing with 
lag but later leveling off for larger lags (fig. 8B). The Matérn 
model [γ(h) in eq. 40] is fitted with the following parameter 
coefficients: (1) nugget effect g (or the variance at the origin) 
of 0.015, in squared units of standardized rank; (2) sill s (or 
upper bound of the model) of 0.143, in squared units of stan-
dardized rank; (3) range ρ of 2.0 mi; (4) effective range r (or 
lag distance at which the model reaches 95 percent of the sill) 
of 5.8 mi; and (5) shape parameter v of 0.5, a unitless value 
(table 7).
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Fitted theoretical variogram models for selected constitu-
ents measured for in water samples collected from wells in the 
INL water-quality network, and temporally averaged during 
1989–2018, are described in table 7 and shown in appendix 8. 
The absence of a variogram model for a constituent may either 
indicate (1) a failure to converge on a unique set of parameter 
values—that is, an infinite number of possible combinations of 
sill and range exist that may be used to fit the model; or (2) a 
poor correlation between the theoretical and sample variogram 
points as indicated by an R2 statistic of less than zero.

A visual inspection of the variograms indicates 
good model fits to their respective sample variogram for 
1,1,1-trichloroethane, chloride, tritium, strontium-90, sodium, 
nitrate, and sulfate, and adequate model fits for carbon tetra-
chloride and trichloroethylene (table 7; app. 8). The sample 
variogram for strontium-90 shows the least amount of local 
variability in variance values. Cyclic or periodic patterns in 
the other sample variograms may be attributed to the presence 
of multiple overlapping plumes and (or) plumes that become 
discontinuous and move as separate fingers—a common 
characteristic of groundwater flow through a fractured bedrock 
aquifer. The variogram model used to approximate the sample 
variogram does not account for large local variability; rather, 
it monotonically increases with distance, indicating that the 
farther two sample sites are apart the more their standardized-
rank values tend to differ, on average, from one another 
(Bossong and others, 1999, p. 13).

Kriging

For each of the selected constituents, an OK method 
was used to estimate values of standardized rank (z in eq. 37) 
at unmeasured locations. The OK model represents z(s) as 
wavering about a constant value (m), and information about 
the scale and intensity of fluctuations about this constant is 
provided by the theoretical variogram model (Kitanidis, 1997, 
p. 120). In mathematical terms, the model is expressed as:

	​ z​(s)​ ​ =  m + e​(s)​​,� (48)

where
	 e(s)	 is the stochastic part of z at point s in 

standardized-rank space, and with a 
mean of zero.

The deterministic part of z is defined as the expected value (E) 
of the standardized ranks, denoted by:

	​ E​[z​(s)​]​ ​ =  m​.� (49)

To obtain an estimate of z at a point s0 (an estimation 
point) from transformed measurements of concentration z(s1), 
z(s2), …, z(sn) requires the following:

(1) The estimate is a linear function of the observed 
values, that is:

	​​​    z ​​ 0​​ ​ = ​  ∑ 
i=1

​ 
n
 ​​λ​ i​​   ​z​ i​​​​,� (50)

where
	 z ̂0	 is the estimate of z at point s0;
	 zi	 is the transformed concentration measurement 

at point si;
	 λi	 is the weighting coefficient corresponding to 

well site i; and
	 n	 is the total number of wells where the 

constituent was sampled for.

(2) The estimate at sampling points is unbiased, that is:

	​ E​[​​   z ​​ 0​​ − ​z​ 0​​]​ ​ =  0​.� (51)

(3) The estimated variance [σ0
2], or mean square estima-

tion error, at point s0 should be as small as possible, where the 
variance is defined as:

	​​ σ​ 0​ 
2​ ​ =  E​[​​(​​   z ​​ 0​​ − ​z​ 0​​)​​​ 

2​]​​.� (52)

The unbiased condition (eq. 51), combined with the esti-
mate in equation 50 and the expected value in equation 
49, becomes:

	​​ 

E​[​ ∑ 
i=1

​ 
n
 ​​λ​ i​​   ​z​ i​​​ − ​z​ 0​​]​ ​ =  0

​  
​ ∑ 
i=1

​ 
n
 ​​λ​ i​​​ E​[​z​ i​​]​ − E​[​z​ 0​​]​ ​ =  0

​  
​ ∑ 
i=1

​ 
n
 ​​λ​ i​​​ m − m ​ =  0

​  

m​(​ ∑ 
i=1
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For this condition (eq. 53) to hold for any value of m 
requires that:

	​​  ∑ 
i=1

​ 
n
 ​​λ​ i​​​  ​ =  1​.� (54)

The estimated variance (eq. 52) in terms of the theoretical 
variogram model [γ(h) in eq. 40] may be computed using the 
condition in equation 53, and may be expressed as:

	​​ σ​ 0​ 
2​ ​ =  − ​ ∑ 

i=1
​ 

n
 ​​ ∑ 
j=1

​ 
n
 ​​λ​ i​​ ​λ​ j​​  ​​γ​(​h​ ij​​)​ + 2​ ∑ 

i=1
​ 

n
 ​​λ​ i​​  γ​(​h​ i0​​)​ ​​.� (55)

Coefficients λ1, λ2, …, λn are determined by minimizing the 
estimated variance (eq. 55) subject to the linear constraint of 
equation 54, or:
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				          .�(56)

The minimization is performed algebraically. Once the λ 
coefficients have been determined, they are substituted back 
into equation 50 to estimate standardized ranks at a single 
unmeasured location, and equation 55 to estimate the kriging 
variance of the predicted value, in standardized rank space. 
The kriging process is repeated for every active node in the 
interpolation grid.

Back Transformation

The back transformation from standardized ranks 
estimated from OK to concentration space is based on the 
transformation model of equation 37. Recall that the model 
describes the relation between concentrations (C̅; see eq. 36) 
and standardized ranks (z) using the EDF, a step function that 
is monotonously increasing. An estimated value of z ̂0 (eq. 50) 
typically will fall between two consecutive standardized ranks 
zi and zi + 1 that correspond to C̅[i] and C̅[i + 1] in concentration 
space. Like in Juang and others (2001, p. 897), a midpoint 
method is used to interpolate within a standardized-rank inter-
val. The back-transformation model is given by:

				    ,� (57)

where
	 Ĉ 

0 	 is the estimated concentration at an 
unmeasured location s0, and

	 n	 is the total number of point observations.

The square root of the kriging variance (also known as the 
standard error [SE]) may then be back-transformed into 
concentration-space by using the same mapping that was dis-
cussed for concentration estimates (eq. 55).

The predictive strength of the kriging model was assessed 
using the LOOCV method (Pebesma, 2004). In this method, 
the fitted theoretical variogram model is used in a kriging 
analysis in which an individual observation C̅i is omitted and 
a kriging prediction is made at the location of the suppressed 
observation using the remaining subset of n–1 observations. 
This process is repeated n times for each observation. The 
LOOCV procedure is evaluated using the cross-validated 
RMSE and R2. The cross-validated RMSE is defined by:

	                                                ,	 (58)

where
	 C̅ 

i	 is time-averaged concentration in well i, and
	 Ĉi

	 is predicted value obtained when the 
kriging model is estimated with the ith 
observation omitted.

Ideally zero, the RMSE statistic was used to choose the best-
fitted theoretical variogram model (provided in eq. 40) from 
the set of candidate models, and the model with the smallest 
cross-validated RMSE was selected.

The RMSE statistic calculated in equation 58 cannot be 
interpreted independently or compared among constituent 
datasets; that is, its usefulness is limited to comparing compet-
ing models for the same data. Therefore, to compare among 
constituents how well the observed data are replicated by the 
kriging model, the cross-validated coefficient of determina-
tion (R2

cv) statistic was calculated for each constituent, and 
defined by:

		            ,� (59)

where
		  is the arithmetic mean of the time- and 

depth-averaged concentrations.

The R2 normally ranges from 0 to 1, where a value of 1 
indicates that the kriging predictions perfectly fit the observed 
data. Models were rejected when their R2

cv value was less 
than zero.

An example of the application of QK to spatially inter-
polate tritium observations is shown in figure 9. The kriging 
analysis is performed using tritium concentrations mea-
sured in water samples collected from 133 wells. In each 
well, recorded tritium concentrations were averaged during 
1989–2018, and depth averaged in wells instrumented with 
multilevel monitoring systems (averaged measurements are 
shown in app. 9, fig. 9.3C). Kriging estimates were made at 
8,507 evenly spaced nodes, separated by a distance of 0.31 
mi (or 500 m) in the active part of the interpolation grid. The 
kriging analysis results in two values for each active node 
location: the predicted concentration (fig. 9A; eq. 57) and the 
kriging SE (fig. 9B).
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Figure 9.  Kriging estimates of the (A) prediction surface and (B) standard error surface of tritium measured for in water samples 
collected from wells in the Idaho National Laboratory water-quality aquifer monitoring network and averaged during 1989–2018. Tritium 
is predicted at points on a regular grid with a spacing of 500 meters and an interpolation domain that is defined by the generalized 
convex hull of the monitoring sites.

The spatial distribution of predicted tritium concentra-
tions indicates the presence of locally extreme values (greater 
than 2,000 pCi/L) in groundwater beneath and near the INTEC 
and Central Facilities Area (CFA) (figs. 1–2; app. 1) with 
much smaller background concentrations (less than 2,000 
pCi/L) in the surrounding area (fig 9A). The predicated values 
agree well with the empirical data, with larger averaged mea-
sured concentrations within the boundaries of the predicted 
contaminant plume. The underestimation of large concentra-
tions by the kriging model is the result of prediction locations 
not coinciding with measurement locations. For example, the 
maximum average tritium concentration was 21,642 pCi/L in 
well USGS 65, whereas the maximum predicted tritium con-
centration was much smaller at 13,176 pCi/L (app. 9, fig. 9.3).

Every kriging prediction is accompanied by a corre-
sponding measure of the uncertainty associated with the pre-
diction. Figure 9B shows the spatial distribution of kriging SE 
for tritium in units of concentration. Values of SE are basically 
a scaled version of the distance to the nearest measurement 
location; that is, SE is small near a sampling site and increases 
as the density of the monitoring network decreases.

Maps of the back-transformed kriging estimates of 
concentration and SE are shown in appendix 9 for selected 
constituents. An examination of the prediction maps indicates 
the presence of isolated contaminant plumes at and near one 
or more INL site facilities. Recall that the site facilities are the 
primary sources of radiochemical and chemical constituents in 
the ESRP aquifer at the INL (Bartholomay and others, 2000). 
Elevated concentrations (greater than background levels) of 
nitrate and sulfate additionally were predicted in the north-
eastern part of the study area and attributed to the application 
of fertilizer through irrigation systems in the Mud Lake area 
northeast of the INL (fig. 1; app. 1). For all constituents, the 
general spatial characteristics of kriging SE are the same, with 
small values of SE near the sampling sites and increases in SE 
as the density of the monitoring network decreases. The rate 
of increase and maximum estimated SE is based on the spatial 
correlation of the measured concentrations as depicted by the 
shape of the underlying theoretical variogram.
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Spatial Optimization

Planning Objective

The planning objective for the water-quality monitoring 
network is to reduce total monitoring costs by removing sam-
pling sites from the existing network because they add little 
or no information characterizing the concentration plume for 
selected analytes in the aquifer. In this study, equal monitoring 
costs are assumed for each sampling site. Although the valid-
ity of this assumption is untrue (for example, travel time can 
account for large variability in monitoring costs), it permits 
wells to be evaluated exclusively through a geostatistical 
analysis of the water-quality concentration measurements. An 
estimate of the true cost savings for a spatially optimized mon-
itoring network is beyond the scope of this study; however, 
decreases in the total number of sampling sites in a monitoring 
network will result in a reduction of total monitoring costs.

Design Criteria

To accomplish the established objective of the monitor-
ing network, constituent concentrations should be measured at 
sampling sites selected to satisfy the following design criteria:

•	 The total number of sites in the optimized monitoring 
network is fixed and based on a user-defined number 
of sampling sites to remove from the existing network 
(k). Selecting an appropriate value for k is a manage-
ment decision and typically requires a cost-benefit 
analysis. To assist decision makers, optimal monitoring 
networks corresponding to the removal of 10, 20, 30, 
40, and 50 sampling sites are included in this report 
(table 8).

•	 Plume maps interpolated for selected analytes using the 
full-dataset (data from sampling sites in the existing 
monitoring network) can be adequately reconstructed 
using the reduced-dataset (data from sampling sites 
in the reduced monitoring network). The interpolated 
plume map (prediction surface) estimated from the 
full-dataset is assumed to provide a realistic estimate 
of the concentration plume in the aquifer. For a given 
analyte, spatial accuracy is evaluated using the differ-
ence between prediction surfaces estimated using the 
reduced-dataset and full-dataset. For example, some 
sites are spatially redundant because their exclusion 
from the existing monitoring network would have 
little-to-no effect on predicting the spatial features of 
the plume.

Table 8.  Hyperparameter values that control the optimization of the water-quality monitoring network, eastern Snake River Plain, 
Idaho.

Hyperparameter Value

Multi-objective problem
    Number of sampling sites to remove from the existing monitoring network 10, 20, 30, 40, 50
    Weighting coefficients on individual objective functions
        Weight on preserving the accuracy of the interpolated plume map (ƒ1) 10.0
        Weight on preserving network coverage (ƒ2) 1.0
        Weight on preserving long-term monotonic trends (ƒ3) 1.0
        Weight on preserving temporal variance (ƒ4) 0.1
Islands parallel genetic algorithm
    Population size that is distributed evenly among islands 2,000
    Number of islands 7
    Migration operators
        Proportion of individuals that migrate between islands 10 percent
        Number of generations at which exchange of individuals takes place, an epoch event 10
    Genetic operators
        Probability of sexual recombination (crossover) between pairs of chromosomes 80 percent
        Probability of mutation in a parent chromosome 10 percent
        Number of chromosomes to survive to next generation (elitism) 7
    Terminating conditions
        Maximum number of consecutive generations without any improvement in the best fitness value 25
        Maximum number of generations 500
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•	 Interpolation error (or uncertainty) from the application 
of kriging should be as small as possible. For example, 
removal of a sampling site from an area of the moni-
toring network where few wells exist typically would 
result in a large increase in the interpolation error 
(assessed using the normalized sum of kriging variance 
for all points in the interpolation grid); therefore, this 
well would not likely be removed.

•	 The long-term monotonic trend of analyte concentra-
tions at a sampling site should be preserved across 
time. These trends are important for evaluating the 
effectiveness of remediation efforts at the INL. That 
is, retaining sampling sites with significant long-term 
trends (assessed using the percent change per year 
estimated from survival regression analysis) is neces-
sary for effectively controlling water pollution in the 
aquifer. There is also an intrinsic value in preserving 
data that supports the construction of a survival regres-
sion (or trend) model.

•	 The variability of water-quality measurements should 
be preserved across time. Sampling sites with con-
centration time-series showing prominent seasonal 
fluctuation and long-term trends are important for 
understanding seasonal water-quality trends and con-
trolling water pollution. Variability is assessed using 
the concentration range of predicted time-series data 
estimated from local regression analysis. The removal 
of sampling sites with small variability preserves the 
historical variability within the reduced-dataset. There 
also is an intrinsic value in preserving data that support 
the construction of a local regression model.

Each of these criteria (with the exception of first design 
criterion, the number of sites to remove) was converted to 
a mathematical metric, and the metrics were combined into 
a single multi-objective function that was used to identify a 
water-quality monitoring network satisfying the design criteria 
as a much as possible.

Multi-Objective Problem

The multi-objective problem is formulated as a single-
objective optimization where a weighted combination of the 
design criteria is minimized. In mathematical terms, this is 
expressed as:

			              ,� (60)

where
	 k	 is the number of sampling sites to remove 

from the existing monitoring network,
	 x	 is the subset of k-sampling sites selected for 

removal from the existing monitoring 
network (a sequential whole number was 

assigned to each sampling site in the 
existing monitoring network and used to 
identify each site),

	 x0	 is the subset of sampling sites that were not 
considered for removal,

	 ne	 is the number of sampling sites in the existing 
monitoring network, and

	 F	 is the “fitness” function.

The minimum fitness value corresponds to the optimal 
monitoring network. The fitness function is dependent on the 
decision variables, a vector of integer values used to identify 
sampling sites in the existing monitoring network that will 
not be included in the reduced network (x in eq. 60). The 
purpose of the optimization solver is to find values of x that 
minimize the fitness value. The optimization problem was 
formulated such that a subset of sampling sites (x0 in eq. 60) 
were not considered for removal from the existing monitoring 
network. These are sampling sites that are located either in a 
multilevel completion well or in an open-hole completion well 
prior to being completed as a multilevel well. The scarcity and 
intrinsic value of depth-dependent water-quality data makes 
untenable an argument for the removal of these sites. Of the 
153 sampling sites (or 133 monitoring wells) in the existing 
network, 31 sites (or 11 wells) were excluded from being con-
sidered for removal (table 1).

The fitness function is used to evaluate the desirability 
of a monitoring network design by representing a weighted 
combination of the chosen design-criteria metrics for multiple 
constituents. For valid combinations of decision variables, the 
fitness value is calculated using the function F, given by:

	​ F​(x)​ ​ = ​  ∑ 
i=1

​ 
​n​ c​​

 ​​{​
​w​ 1​​   ​f​ 1,i​​​(x)​ + ​w​ 2​​   ​f​ 2,i​​​(x)​
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where
	 nc	 is the number of selected constituents;
	 w	 is the weighting coefficient; and
	 f	 is the objective function, a unitless value.

All the design criteria except for the management deci-
sion of how many sites to remove from the existing monitor-
ing network (k) are quantified by each of the objective func-
tions: f1, f2, f3, and f4. The relative influence of each criterion 
may be established by varying the associated weights: w1, w2, 
w3, and w4.

Functions f1 and f2 are based on kriging estimates using 
the existing and reduced monitoring networks, where krig-
ing predictions—and the uncertainty associated with these 
predictions—are made at nodes within the interpolation grid 
(app. 9). The function f1 is a metric selected to minimize the 
root-mean-square deviation (RMSD) between the predicted 
concentrations (Ĉ 

0 in eq. 57) from kriging of observations in 
the existing and reduced monitoring networks. The RMSD is 
normalized by dividing it by the predicated range of con-
centrations based on kriging of observations in the existing 

x = arg min
x1,x2,...,xk∈! 1≤x≤ne  and x∉x0

F x( )
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monitoring network. This normalized value will be close to 1. 
Individual objective functions were normalized to facilitate the 
comparison of different objective functions. That is, a transfor-
mation is used to ensure that objective functions have similar 
orders of magnitude.

The function f1 is mathematically expressed as:

				    ,� (62)

where
	 nn	 is the number of active nodes in the 

interpolation grid,
	 Ĉ e,i	 is the predicted concentration at node i in 

the interpolation grid based on kriging 
of observations at all sites in the existing 
monitoring network, and

	 Ĉ r,i	 is the predicted concentration at node 
i based on kriging of observations 
at sites constituting the reduced 
monitoring network.

Removal of sites with small differences between measured and 
estimated values decreases the normalized RMSD more than 
removing sites with large differences.

The function f2 is the metric selected to minimize the 
uncertainty of predicted concentrations at nodes in the interpo-
lation grid (σ0

2 in eq. 55), and is defined as the ratio between 
the sum of kriging variance based on kriging of observations 
at sites constituting the reduced monitoring network (σ2

r) and 
the existing monitoring network (σ2

e), given by:
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​​.� (63)

Because kriging variance at each node i depends on the prox-
imity of nearby sampling sites, removal of sites from regions 
that have sparser data increases kriging variance more than at 
nodes that are close to other supporting data.

The function f3 is the metric selected to preserve the long-
term monotonic trends estimated using survival regression 
analysis, and is defined as

	​​ f​ 3​​(x) = max​(​|​{​Δ​ i∈x​​}​|​)​​,� (64)

where
	 Δi​∈​x	 is the fractional change per year of constituent 

concentration (Δ in eq. 31) at site i of the 
subset of sites selected for removal from 
the existing monitoring network.

Removing sites where a trend could not be established, or the 
slope was small, preserves the significant long-term trends in 
the reduced monitoring network.

The function f4 is the metric selected to preserve the 
temporal variability of predicted concentrations using local 
regression analysis, and is defined as

	                               ,� (65)

where
	 Δ̃Ĉi	 is the difference between the highest and 

lowest predicated concentrations (ΔĈ in 
eq. 21) at site i divided by the maximum 
ΔĈ for all sites; that is:

	                                                    .� (66)

Removing sites where a loess curve could not be established, 
or the temporal variability was small, preserves the temporal 
variability more than removing sites with large variability.

For multi-objective problems, identifying a single solu-
tion that simultaneously minimizes each objective function 
(eqs. 62–65) is almost impossible. That is, any single objective 
value can often only be improved by making at least one of the 
other objective values worse. Combining the individual objec-
tive functions into a single weighted-objective function is sub-
jective, requiring that a decision maker provide the weights. 
The weighted multi-objective function also is ill-suited for 
determining tradeoffs among objective functions. Because 
the objective functions are simply weighted and added to 
produce a single fitness value, the function with the largest 
range dominates the solution to the optimization problem. 
A poor value for the objective function with the larger range 
makes the overall fitness much worse than a poor value for the 
function with the smaller range (Bentley and Wakefield, 1997; 
Fisher 2013).

Objective functions (eqs. 62–65) are formulated such 
that their function value is close to 1 and dimensionless, thus 
making it easier to set the weighting coefficients such that they 
are significant relative to each other and relative to the objec-
tive function values (Marler and Arora, 2010, p. 857). For this 
study, preserving the accuracy of the interpolated plume map 
(f1 in eq. 62) by setting w1 equal to 10 was emphasized, and 
preserving temporal variability (f4 as defined in eq. 65) by 
setting w4 equal to 0.1 was de-emphasized. Weights associated 
with preserving network coverage (f2 in eq. 63) and long-term 
monotonic trends (f3 in eq. 64) were set equal to 1 (w2=w3=1) 
(table 8). No other weighting schema were considered to quan-
tify the importance of the weighting choice.
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i∈1,…,ne⎧

⎨
⎩

⎫
⎬
⎭

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

f1(x) =

1
nn
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42    Optimization of the Idaho National Laboratory Water-Quality Aquifer Monitoring Network, Southeastern Idaho

Island Parallel Genetic Algorithm

A genetic algorithm (GA) (Holland, 1975) is used to find 
the best fitness value (that is, the minimum F value in eq. 60). 
GAs are adaptive heuristic search algorithms that mimic the 
mechanics of natural selection and survival of the fittest and 
are well suited for solving combinatorial optimization prob-
lems in which there is a large set of candidate solutions. Koza 
(1992, p. 18) provides the following definition of a GA:

“The genetic algorithm is a highly parallel math-
ematical algorithm that transforms a set (population) 
of individual mathematical objects (typically fixed-
length character strings patterned after chromosome 
strings), each with an associated fitness value, into 
a new population (i.e., the next generation) using 
operations patterned after the Darwinian principle 
of reproduction and survival of the fittest and after 
naturally occurring genetic operations (notably sexual 
recombination).”
In GA terminology, the array of decision variables in the 

optimization problem is called a “chromosome,” which for 
the current problem defines the set of sampling sites being 
considered for removal from the existing monitoring network 
(x in eq. 60). A chromosome represents a single solution in the 
solution space, the collection of all possible solutions to the 
optimization problem. In this study, a chromosome describes 
a single design solution for the reduced water-quality monitor-
ing network (that is, sampling sites to exclude from the exist-
ing monitoring network). Each design solution (referred to as 
a “individual”) is assigned a fitness value (F in eq. 60), which 
summarizes how well the particular set of sites meets the over-
all design objective (described in section, “Design Criteria”). 
The GA operates on a collection of individuals referred to as a 
“population.”

The GA problem is well suited for parallel computing 
because it requires a large number of independent calculations 
with negligible cost of data communication and synchroni-
zation among computer processors. To make use of parallel 
computing, the type of GA implemented in this report is a 
coarse-grained parallel GA or island parallel GA (ISLPGA) as 
described by Scrucca (2017). In an ISLPGA, a population of 
individuals (that is, candidate solutions) are partitioned into 
several subpopulations, with each subpopulation assigned a 
unique and separate “island.” A subpopulation is allowed to 
evolve independently with the occasional exchange of the fit-
test individuals among islands (referred to as a “migration”). 
The periods of isolated evolution are called “epochs,” with 
migration occurring at the end of each epoch (except the last) 
(Martin and others, 1997, p. C6.3:4). The exchange of indi-
viduals is used to introduce diversity in a subpopulation, thus 
avoiding convergence on a local optimum, a solution that is 
optimal within a neighboring set of candidate solutions rather 
than the best solution among all possible values. Independent 
GAs are run on the subpopulation of each island, and are 
assigned to a separate computer processor.

An ISLPGA sensitivity analysis was performed dur-
ing the preliminary phase of this scientific investigation to 
determine the best values for parameters that control the 
spatial optimization of the water-quality monitoring network 
(table 8); the value of the hyperparameters can have a signifi-
cant effect on the performance of the search. Recall that the 
hyperparameters are configuration variables that are external 
to the model and cannot be directly estimated from the data. 
The process of finding the best hyperparameter values (also 
known as hyperparameter tuning) for the ISLPGA was based 
on a trial-and-error approach in which cross validation of the 
kriging model was used as the primary performance metric to 
guide hyperparameter tuning, as well as the tradeoff between 
computational costs and predictive skill.

For this study, a population of 2,000 individuals was 
distributed evenly between seven separate islands. The length 
of the epochs (or migration interval) was set equal to 10 gen-
erations; that is, migration occurs in 10-generation intervals. 
The number of individuals that migrate between neighboring 
subpopulations was set equal to 10 percent of the population. 
Genetic operators were specified as follows: (1) an 80-percent 
probability of sexual recombination (crossover) between pairs 
of chromosomes; (2) a 10-percent probability of mutation in 
a parent chromosome; and (3) the number of chromosomes 
to survive to the next generation (elitism) set equal to 25. A 
general description of these genetic operators is provided by 
Fisher (2013). The termination of a GA search occurs after 25 
generations of no improvement of the best individual within 
the subpopulation, or for cases when there is no-convergence, 
after 500 generations.

Optimal Sampling Sites

The water-quality monitoring network was spatially 
optimized five times, removing 10, 20, 30, 40, and 50 sam-
pling sites, respectively, from the existing network. The 
number of sites removed from the network (k) has a significant 
effect on the best fitness value because of the dependence of 
individual objective functions (f1, f2, f3, f4) on k. Increasing k 
results in increased values of the objective function, which, in 
turn, linearly increases the best fitness value (weighted sum 
of objectives, eq. 61; table 9). The best fitness value at each 
epoch of the ISLPGA search (removing 10, 20, 30, 40, and 50 
wells, respectively) is shown in figure 10. Recall that an epoch 
is the number of generations at which exchange of individuals 
between islands takes place and is equal to 10 generations in 
this report.

All the convergence curves may be characterized by fit-
ness values that decrease rapidly, and then level off to become 
asymptotic towards the near-optimal solution (fig. 10). The 
number of epochs needed to satisfy the convergence (termi-
nation) condition increased as the number of removed wells 
increased (table 9; fig. 10). This should be expected given 
that the number of possible combinations increases as k is 
increased. For example, there are 1.4×1014 possible network 
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Table 9.  Island parallel genetic algorithm searches summarized for optimal water-quality monitoring networks, eastern Snake River 
Plain, Idaho.

[Number removed: Number of wells removed from the existing monitoring network. Best fitness value: Smallest fitness value determined by the island parallel 
genetic algorithm (ISLPGA), a unitless value. Number of epochs: Number of periods of isolated evolution. An epoch is composed of 10 consecutive genera-
tions. Computational time: Time required to run the ISLPGA. Range of objectives: Range of weighted objective-function values over the ISLPGA search for 
each design criteria f1, f2, f3, and f4]

Number 
removed

Best fitness 
value

Number of 
epochs

Computational 
time 

(days)

Range of objectives

f1 f2 f3 f4

10 9.46 11 2.6 0.160 0.050 0.100 0.010
20 9.89 28 5.7 0.270 0.080 0.050 0.120
30 10.26 32 5.9 0.540 0.110 0.140 0.120
40 10.67 44 6.6 0.820 0.150 0.110 0.100
50 11.09 50 7.6 0.640 0.220 0.130 0.220
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Figure 10.  Best fitness value at each epoch of the island parallel genetic algorithm (removing 10, 20, 30, 40, and 50 wells, 
respectively) from the existing monitoring network, eastern Snake River Plain, Idaho.

configurations when k equals 10 and 5.3×1034 configurations 
when k equals 50. Computational time also increased with 
increased values of k and was strongly correlated (R2=0.97) 
with the number of epochs needed for convergence (table 9). 
The computational times ranged from 2.6 days (removing 10 
sites) to 7.6 days (removing 50 sites) (table 9). The optimiza-
tion analysis was run in parallel using 7 of the 8 threads avail-
able on a 4-core Intel® Xeon® central processing unit E5-1620 
v3 running at 3.5 gigahertz and with 32 gigabytes of random-
access memory.

The range of weighted objective-function values in solu-
tion space indicates the relative influence of each design crite-
rion in determining the optimal solution. For a given ISLPGA 
run and design criterion, a weighted objective-function value 
is calculated at each epoch (app. 10); the range of these values 
is defined as the difference between the largest and smallest 
value. The range of each weighted objective-function value is 

given in table 9 for ISLPGA runs based on changing the num-
ber of wells to remove from the existing network. As indicated 
by their ranges, the relative influence of each design criterion 
on the solution can vary depending on the number of wells 
to remove.

As intended, the accuracy of the interpolated plume 
map (f1) has the greatest control over the evolutionary search. 
Design criteria f2, f3, and f4 have less control over evolution 
and only after f1 has been minimized to its fullest possible 
extent. The relative influence of criteria f2, f3, and f4 on the 
solution varies in order of importance. For example, the influ-
ence of criterion f3 (range equal to 0.100) on the solution is 
greater than the influence of criterion f4 (range equal to 0.010) 
when k equals 10. However, when k equals 20, the influence of 
criterion f3 (range equal to 0.050) on the solution is less than 
the influence of criterion f4 (range equal to 0.120; table 9). 
For this study, design criteria were divided into primary and 
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secondary criteria by varying their associated weights. The 
primary design criterion is f1, and the secondary criteria are f2, 
f3, and f4. The order of importance for criteria f2, f3, and f4 was 
assumed irrelevant to the design of an optimal network.

Sampling sites (where each site represents an individual 
well) identified for removal from the existing monitoring 
network are given in table 10. Here, the number of times the 
site was identified for removal in the five ISLPGA runs (each 
run corresponding to an optimized monitoring network) is 
enclosed in parentheses and italicized. For example, 7 of 
the 10 wells selected for removal were identified in all five 
ISLPGA runs (wells CPP 2, CPP 4, TRA 4, USGS 109, USGS 
121, USGS 125, and USGS 45), 1 of the 10 wells was identi-
fied in three of the ISLPGA runs (well USGS 126B), 1 of the 
10 wells was identified in two of the ISLPGA runs (well PSTF 
TEST), and 1 of the 10 wells was identified only once (well 
TRA 1). Each ISLPGA run provides a unique solution that is 
entirely dependent on the number of wells to remove from the 
existing network. That is, the solutions are non-sequential; 
wells identified for removal in the ISLPGA run removing 10 
wells are not required to be part of the solution for the GA 
run removing 20 wells. The relatively large value of times 
identified, however, indicates that a consistent group of wells 
provides little-to-no beneficial added information.

The location of optimal sampling sites that were identi-
fied for removal is shown in figure 11; appendix 1, fig. 1.3; 
and appendix 11. Maps showing the difference between the 
kriged prediction surface using the existing and reduced 
monitoring networks are provided in appendix 11. An example 
of the spatial distribution of the tritium concentration differ-
ences predicted from network configurations removing 0 and 
50 wells is shown in figure 12 and appendix 11, fig. 11.9. As 
expected, the largest differences in concentration are located 
in the solute plume, an area that is difficult to accurately 
interpolate because of its steep concentration gradients. For 
all analytes, concentration differences typically are small, 
thus indicating the effectiveness of the ISLPGA at removing 
spatially redundant wells.

Throughout the study area, network coverage was 
adequately preserved in the reduced networks. For cases 
where two wells are separated by a small distance (less than 
200 ft), the ISLPGA frequently identified one of these wells 
for removal, helping to confirm the ability of the algorithms 
to identify spatial redundancy. For example, well USGS 109 
was selected for removal in all five ISLPGA searches and is 
located 187 ft from well USGS 137A, and well USGS 126B 
was selected for removal in three of the searches and is located 
61 ft from well USGS 126A.

The efficiency of an optimal network design was quan-
tified for each analyte using the following performance 
measures:

1.	RMSD between the kriged concentrations estimated 
using the existing and reduced monitoring networks (ide-
ally small).

2.	The number of sites that have sufficient data for detect-
ing a long-term monotonic trend using a survival regres-
sion analysis (ideally large).

3.	The average long-term monotonic trend in percent 
change per year (ideally large).

4.	The number of sites that have sufficient data for local 
regression analysis (ideally large).

5.	The average concentration range of predicted values 
based on local regression analysis (ideally large).

A quantitative comparison among the existing (0 wells 
removed) and optimal network designs (removing 10, 20, 30, 
40, and 50 wells) using these metrics is shown in table 11. As 
expected, and for each of the selected analytes, the magnitude 
of the RMSD increases with increasing numbers of wells 
removed, with the exception of sodium, where the RMSD for 
40 wells removed (0.3175 mg/L) was less than the RMSD for 
30 wells removed (0.4492 mg/L), and may indicate that the 
global optima were not determined for this ISLPGA run.

The number of sites with long-term monotonic trends 
in the reduced network decreases (or does not change) with 
increasing numbers of wells removed. For carbon tetrachlo-
ride, 1,1-dichloroethylene, 1,1,1-trichloroethane, and trichloro-
ethylene, the trend was estimable in a relatively small number 
of wells in comparison to the other analytes—a set of wells 
that were always included in the optimized networks. For 
sodium, chloride, sulfate, nitrate, tritium, and strontium-90, 
the average trend (in percent change per year) typically 
increases with increasing numbers of wells removed. Recall 
that the maximum trend value for sites removed from the 
existing monitoring network is minimized in the optimization 
problem (eq. 64). Therefore, the evolutionary search always 
will be inclined to remove sites with small trend values.

The number of sites with sufficient data for determining 
a local regression model decreases with increasing numbers 
of wells removed, whereas for most analytes, the average con-
centration range of predicted values increases with increasing 
numbers of wells removed. Recall that the maximum of the 
normalized concentration range of predicted values for sites 
removed from the existing monitoring network is minimized 
in the optimization problem (eq. 65). Therefore, the evolu-
tionary search always will be inclined to remove sites with a 
smaller predicted concentration range.

As indicated by the optimization results, no single net-
work exists that simultaneously optimizes each of the objec-
tives for all the selected constituent types. That is, any single 
objective value often can be improved only by degrading at 
least one of the objective values. Because analyte components 
of an individual objective function simply are added to pro-
duce a single objective value, improvements associated with 
one analyte component may come at the cost of one or more of 
the other analyte components. Analyte components are equally 
weighted within each objective function (eqs. 62–65) to avoid 
preferencing one or more analytes above the others.
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Table 10.  Wells identified for removal based on island parallel genetic algorithm searches, eastern Snake River Plain, Idaho.

[Number removed: Number of wells removed from the existing monitoring network. Well name: Local well name. The number of times the well site was 
identified for removal in each of the networks five genetic algorithm searches is enclosed in parentheses and italicized]

Number 
removed

Well name

10 CPP 2 (5) CPP 4 (5) PSTF TEST (2) TRA 1 (1)
TRA 4 (5) USGS 109 (5) USGS 121 (5) USGS 125 (5)
USGS 126B (3) 1USGS 45 (5)

20 ATOMIC CITY WELL 1 (3) BADGING FACILITY (4) CPP 2 (5) CPP 4 (5)
SITE 19 (4) TRA 3 (4) TRA 4 (5) TRA DISP (4)
USGS 104 (4) USGS 107 (4) USGS 109 (5) USGS 121 (5)
USGS 125 (5) USGS 126B (3) USGS 26 (4) USGS 39 (4)
1USGS 42 (4) 1USGS 45 (5) USGS 79 (4) USGS 97 (4)

30 ATOMIC CITY WELL 1 (3) BADGING FACILITY (4) CPP 2 (5) CPP 4 (5)
RWMC M12S (3) SITE 19 (4) SITE 4 (3) SITE 9 (3)
TRA 3 (4) TRA 4 (5) TRA DISP (4) USGS 100 (3)
USGS 104 (4) USGS 107 (4) USGS 109 (5) USGS 116 (3)
USGS 121 (5) USGS 125 (5) USGS 126A (3) USGS 26 (4)
USGS 35 (2) USGS 39 (4) 1USGS 41 (3) 1USGS 42 (4)
1USGS 45 (5) USGS 58 (3) USGS 7 (2) USGS 76 (2)
USGS 79 (4) USGS 97 (4)

40 ANP 9 (2) ATOMIC CITY WELL 1 (3) BADGING FACILITY (4) CFA 2 (2)
CPP 2 (5) CPP 4 (5) HIGHWAY 3 (2) RIFLE RANGE (2)
RWMC M12S (3) SITE 19 (4) SITE 4 (3) SITE 9 (3)
SPERT 1 (2) TRA 3 (4) TRA 4 (5) TRA DISP (4)
USGS 100 (3) USGS 104 (4) USGS 106 (2) USGS 107 (4)
USGS 109 (5) USGS 116 (3) USGS 121 (5) USGS 125 (5)
USGS 126A (3) USGS 126B (3) USGS 127 (2) USGS 15 (1)
USGS 26 (4) 1USGS 36 (2) USGS 39 (4) 1USGS 41 (3)
1USGS 42 (4) 1USGS 45 (5) 1USGS 46 (2) USGS 58 (3)
1USGS 59 (2) USGS 7 (2) USGS 79 (4) USGS 97 (4)

50 ANP 9 (2) BADGING FACILITY (4) CFA 2 (2) CPP 2 (5)
CPP 4 (5) HIGHWAY 3 (2) PSTF TEST (2) RIFLE RANGE (2)
RWMC M12S (3) SITE 14 (1) SITE 19 (4) SITE 4 (3)
SITE 9 (3) SPERT 1 (2) TRA 3 (4) TRA 4 (5)
TRA DISP (4) USGS 1 (1) USGS 100 (3) USGS 104 (4)
USGS 106 (2) USGS 107 (4) USGS 109 (5) USGS 110A (1)
USGS 111 (1) 1 1USGS 114 (1) USGS 116 (3) USGS 12 (1)
USGS 121 (5) USGS 125 (5) USGS 126A (3) USGS 127 (2)
USGS 19 (1) USGS 23 (1) USGS 26 (4) USGS 35 (2)
1USGS 36 (2) USGS 39 (4) 1USGS 41 (3) 1USGS 42 (4)
1USGS 45 (5) 1USGS 46 (2) 1USGS 47 (1) USGS 58 (3)
1USGS 59 (2) USGS 76 (2) USGS 79 (4) USGS 82 (1)
1USGS 85 (1) USGS 97 (4)

1Maximum contaminant level exceeded for at least one of the selected analytes.
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A.  10 wells removed

Figure 11.  U.S. Geological Survey aquifer water-quality monitoring network after removing (A) 10, (B) 20, (C) 30, (D) 40, 
and (E) 50 optimally selected wells, Idaho National Laboratory and vicinity, Idaho.
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B.  20 wells removed

Figure 11.—Continued
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C.  30 wells removed

Figure 11.—Continued
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D.  40 wells removed

Figure 11.—Continued
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E.  50 wells removed

Figure 11.—Continued
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Figure 12.  Difference between kriged tritium surfaces using the existing and reduced U.S. Geological Survey aquifer 
water-quality monitoring network after removing 50 optimally selected wells, Idaho National Laboratory and vicinity, 
Idaho.
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Table 11.  Comparison among optimized water-quality monitoring networks for selected constituents, Idaho National Laboratory and 
vicinity, Idaho.

[Number removed: Number of wells removed from the existing monitoring network. Kriging RMSD: Quantifies the performance of the quantile kriging 
analysis using the root-mean-square deviation (ideally small), a measure of the deviation between the kriged concentrations estimated using the existing and 
reduced monitoring networks. Survival regression: Long-term monotonic trend of predicted concentrations in an individual well based on survival-regression 
analysis. The trend (percent change per year) was estimable in n wells and summarized using the mean value. Local regression: Range of predicted concentra-
tions in an individual well based on local-regression analysis. The range, in concentration space, was estimable in n wells and summarized using the mean value. 
Abbreviations: mg/L, milligrams per liter; µg/L micrograms per liter; N, nitrogen; pCi/L, picocuries per liter]

Analyte name
Number 
removed

Kriging RMSD
Survival regression Local regression

n mean n mean

Sodium, mg/L 0 0.0000 72 1.545 118 6.156
10 0.2561 66 1.631 108 6.652
20 0.2696 60 1.739 98 7.128
30 0.4492 56 1.823 89 7.609
40 0.3175 49 1.687 79 7.357
50 0.4573 42 1.746 69 7.655

Chloride, mg/L 0 0.0000 87 2.072 123 18.880
10 0.3573 78 2.195 113 20.251
20 0.4845 72 2.322 103 21.822
30 0.6982 68 2.346 94 22.945
40 1.1059 61 2.304 84 23.114
50 1.2945 52 2.418 74 24.224

Sulfate, mg/L 0 0.0000 54 1.051 73 8.853
10 0.1373 50 1.094 69 9.230
20 0.2770 45 1.101 62 9.431
30 0.3376 39 1.104 54 9.810
40 0.4146 37 1.128 50 9.995
50 0.5014 31 1.121 43 10.241

Nitrate, mg/L as N 0 0.0000 59 1.759 105 0.629
10 0.0203 55 1.800 97 0.667
20 0.0269 51 1.885 90 0.687
30 0.0424 49 1.894 84 0.701
40 0.0469 42 1.778 76 0.697
50 0.0550 34 1.925 65 0.664

Carbon tetrachloride, µg/L 0 0.0000 3 5.294 28 0.577
10 0.0044 3 5.294 27 0.599
20 0.0051 3 5.294 25 0.646
30 0.0063 3 5.294 24 0.673
40 0.0067 3 5.294 22 0.734
50 0.0088 3 5.294 21 0.769

1,1-Dichloroethylene, µg/L 0 0.0000 1 3.011 22 0.082
10 0.0002 1 3.011 21 0.083
20 0.0004 1 3.011 20 0.084
30 0.0005 1 3.011 19 0.086
40 0.0004 1 3.011 17 0.093
50 0.0005 1 3.011 16 0.095
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Temporal Optimization

Iterative Thinning

Temporal optimization was performed using iterative 
thinning. Originally proposed by Cameron (2004), iterative 
thinning examines whether the historical sampling frequency 
for a given well location and constituent may be reduced 
because of temporal redundancy in the sampling events. The 
temporal redundancy is assessed using a non-parametric statis-
tical technique of iteratively removing (thinning) observations 
from time-series data until the temporal patterns in the original 
(or full) dataset no longer can be identified with confidence. 

Iterative thinning is formulated here to identify an optimal 
sampling interval for constituent analysis of future water 
samples collected from a well. The sampling interval (Δt̃) is 
defined as the median number of days between consecutive 
and unique sampling dates, or:

		              ,� (67)

where
	 ti	 is the sampling time for observation i, and n is 

the total number of observations.

Δt! = median ti+1 − ti{ }
for i∈ i∈! 1≤ i < n{ }

Table 11.  Comparison among optimized water-quality monitoring networks for selected constituents, Idaho National Laboratory and 
vicinity, Idaho.—Continued

[Number removed: Number of wells removed from the existing monitoring network. Kriging RMSD: Quantifies the performance of the quantile kriging 
analysis using the root-mean-square deviation (ideally small), a measure of the deviation between the kriged concentrations estimated using the existing and 
reduced monitoring networks. Survival regression: Long-term monotonic trend of predicted concentrations in an individual well based on survival-regression 
analysis. The trend (percent change per year) was estimable in n wells and summarized using the mean value. Local regression: Range of predicted concentra-
tions in an individual well based on local-regression analysis. The range, in concentration space, was estimable in n wells and summarized using the mean value. 
Abbreviations: mg/L, milligrams per liter; µg/L micrograms per liter; N, nitrogen; pCi/L, picocuries per liter]

Analyte name
Number 
removed

Kriging RMSD
Survival regression Local regression

n mean n mean

1,1,1-Trichloroethane, µg/L 0 0.0000 8 6.055 27 0.165
10 0.0009 8 6.055 26 0.170
20 0.0018 8 6.055 25 0.174
30 0.0032 8 6.055 24 0.179
40 0.0024 8 6.055 22 0.190
50 0.0044 8 6.055 21 0.197

Trichloroethylene, µg/L 0 0.0000 5 4.314 23 0.351
10 0.0001 5 4.314 22 0.365
20 0.0001 5 4.314 21 0.379
30 0.0002 5 4.314 20 0.396
40 0.0015 5 4.314 18 0.437
50 0.0023 5 4.314 17 0.459

Tritium, pCi/L 0 0.0000 45 8.599 123 5,195.859
10 37.8545 45 8.599 113 5,638.498
20 86.2070 41 8.890 103 6,014.921
30 144.4921 35 9.185 94 6,247.292
40 147.9324 31 9.091 84 6,627.733
50 164.3451 24 8.894 74 6,130.093

Strontium-90, pCi/L 0 0.0000 18 5.268 74 5.227
10 0.0190 18 5.268 69 5.488
20 0.0756 17 5.465 64 5.675
30 0.0767 16 5.548 57 5.937
40 0.1687 13 5.656 51 5.929
50 0.1748 12 5.785 45 5.626
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Given an unevenly spaced time series of constituent con-
centrations at a well, a subset of observations is selected for 
removal from the full-dataset in such a way that each obser-
vation has an equal probability of being chosen. The number 
of observations in the subset is expressed as a fraction s of 
the total number of observations n, and equal to ⎣sn⎦. A loess 
curve is fitted to the reduced-dataset (described in section, 
“Local Regression Analysis”). Let cj denote the loess-curve 
value evaluated at prediction point j (eq. 20). The ability of the 
reduced-dataset to capture the temporal patterns of trends in 
the full-dataset is evaluated by calculating the proportion of cj 
values that fall inside the 90-percent confidence band (confi-
dence intervals are defined in eq. 22) of the loess curve fitted 
to the full-dataset. A 90-percent confidence level was chosen, 
rather than the most commonly used 95-percent confidence 
level, to ensure that the width of the confidence band did not 
get so wide as to allow large changes in the loess curve as 
observations are iteratively removed. This is of particular con-
cern in wells with small sample sizes (Cameron and Hunter, 
2002, p. 644–645). The proportion p is defined as:

� (68)

where
	 m	 is the total number of prediction points.

The iterative-thinning algorithm finds the largest frac-
tion of observations that may be removed from the full-
dataset while still resulting in a p value that is greater than 
0.8. That is, at least 80 percent of the predicted points on the 
loess curve fitted to the reduced-dataset must fall within the 
90-percent confidence band around the loess curve fitted to the 
full-dataset. A numerical threshold of 80 percent was chosen 
to ensure that the characteristics of the original trend were 
adequately preserved.

To minimize the influence of artifacts that may result 
from the preferential selection of certain parts of the sampling 
record, p values (eq. 68) are calculated for many different 
realizations of the reduced-dataset. For each realization, obser-
vations are selected using simple random sampling from the 
full-dataset. The average of these p values provides a better 
indication as to how well a reduced sampling interval would 
be able to preserve the temporal patterns of trends in the full-
dataset (Cameron, 2004, p. 95). In mathematical terms, the 
estimation of s is expressed as:

		              ,� (69)

where
	 p̅	 is the mean p value calculated from loess 

curves fitted to different realizations of the 
reduced-dataset, removing ⎣sn⎦ randomly 
selected observations;

	 N	 is the total number of realizations of the 
reduced-dataset; and

	 pmin	 is the minimum permitted p̅  value.

In this study, the fraction s (eq. 69) is estimated using an 
80-percent confidence band (p̅ = 0.8), and 500 realization 
(N=500). Five hundred was chosen as the number of realiza-
tions to provide sufficient information to determine the mean 
of exceeding the 80-percent threshold value. The optimal 
sampling interval ​​​   Δt ​​​ *​​is calculated by dividing the historical 
sampling interval (Δt̃ in eq. 67) by the fraction of observations 
remaining in the optimally reduced-dataset:

	​​​    Δt ​​​ *​ ​ = ​   ​   Δt ​ _ 1 − s​​.� (70)

Two examples of the application of iterative thinning 
to unevenly spaced time-series data are shown in figure 13. 
These examples include an iterative thinning of tritium in well 
USGS 20 (fig 13A) and chromium in well USGS 38 (fig. 13B). 
Each of these figures shows the loess curves fitted to each of 
the 500 realizations of the reduced-dataset when the fraction 
of removed observations is at optimality. In both examples, 
the bulk of loess curves fitted to realizations of the reduced-
dataset are able to preserve the temporal patterns of trends in 
the full-dataset.

Optimal Sampling Intervals

Iterative thinning was performed on each well-analyte 
combination with sufficient data for local regression analysis. 
Recall that the 90-percent confidence band around the loess 
curve fitted to the full-dataset is shown in appendix 5. For each 
well-analyte combination, an optimal sampling interval was 
determined and shown in appendix 12. The sampling reduc-
tion is represented as a percent change between median and 
optimized sampling intervals (Δ%) and was defined as:

	​ Δ %  ​ = ​ ​​   Δt ​​​ ∗​ − ​   Δt ​ _ 
​   Δt ​

 ​     ×  100​.� (71)

Sampling reduction values (app. 12) ranged from a 
minimum of 0 percent to a maximum of 3,100 percent, with a 
mean of 113 percent and a standard deviation of 131 percent. 
Given that multiple constituents are measured for in a water 
sample collected from a well, the best sampling frequency for 
a well is a management decision. A conservative approach to 
selecting the best sampling frequency for a well is to use the 
minimum of the optimal sampling interval values associated 
with the well. For example, the most conservative sampling 

p = 1
m

1, for Ĉ
ℓ, j ≤ cj ≤ Ĉu, j

0, for cj < Ĉℓ, j  or cj > Ĉu, j

⎧
⎨
⎪

⎩⎪
j=1

m

∑

s = argmax
s∈!

p = 1
N

pk
k=1

N

∑ ,

subject to: p > pmin
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Figure 13.  Loess curves computed in the final iteration of the iterative-thinning algorithm, with curves fitted to (A) tritium 
in well USGS 20 and (B) chromium in well USGS 38, Idaho National Laboratory, Idaho, 1989–2018. Water-quality data from 
groundwater samples collected on the same day were averaged. n, number of observations.

frequency for well ANP 6 is 1.4 years based on chloride hav-
ing the smallest optimal sampling interval (1.4 years) relative 
to the other constituents (1.7–2.4 years).

Summary and Conclusions
Budgetary constraints and the high cost of long-term 

water-quality monitoring in the eastern Snake River Plain 
aquifer beneath the Idaho National Laboratory (INL) and 
vicinity, in southeastern Idaho, have necessitated a reduc-
tion in the number of wells (sampling sites) in the existing 
network. Since 1949, the U.S. Geological Survey, in coopera-
tion with the U.S. Department of Energy, has maintained as 
many as 200 wells in the INL water-quality aquifer monitoring 
network. Long-term monitoring of water-quality data collected 
from these wells has provided essential information for delin-
eating the movement of radiochemical and chemical wastes 
in the aquifer. The planning objective for the network is to 
reduce well monitoring redundancy by removing wells and 

decreasing sampling frequency at locations that add little or no 
information characterizing the water quality in the aquifer. To 
accomplish this objective, an evaluation and optimization of 
groundwater monitoring in the existing network was per-
formed based on water-quality data collected at 153 sampling 
sites since January 1, 1989. Several options for optimally 
reduced networks were identified that minimize redundancy 
while retaining sufficient data to reliably characterize water-
quality conditions in the aquifer. Spatial and temporal redun-
dancy were examined using two different approaches; that is, 
the spatial and temporal components of the optimization were 
performed separately.

In the spatial optimization, the quality of a water-quality 
monitoring network design was evaluated using a single 
weighted-objective function that combines the following 
individual objective functions: (1) minimizing the interpola-
tion error to ensure that the best spatial coverage is retained in 
the reduced-monitoring network; (2) safeguarding against the 
removal of sites with significant long-term trends that may be 
useful for evaluating the effectiveness of remediation efforts at 



56    Optimization of the Idaho National Laboratory Water-Quality Aquifer Monitoring Network, Southeastern Idaho

the INL; and (3) safeguarding against the removal of sites with 
repeated sampling at regular intervals over multiple years, and 
showing large variability in analyte concentrations, so as to 
preserve the long-term history of the sampling program.

As indicated by the optimization results, no single net-
work exists that simultaneously optimizes each of the individ-
ual objective functions for all the selected constituent types. 
That is, the optimized network represents a tradeoff among 
sometimes conflicting objectives. Any single objective value 
may be improved only by degrading at least one of the other 
objective values. Because analyte components of an individual 
objective function simply are added to produce a single objec-
tive value, improvements associated with one analyte com-
ponent generally came at the cost of one or more of the other 
analyte components.

A constituent was selected for inclusion in the spatial 
optimization problem when the observations were sufficient to 
(1) establish a two-range variability model, (2) classify at least 
one concentration time series as a continuous record block, 
and (3) make a prediction using the quantile-kriging inter-
polation method. The selected constituents include sodium, 
chloride, sulfate, nitrate, carbon tetrachloride, 1,1-dichloroeth-
ylene, 1,1,1-trichloroethane, trichloroethylene, tritium, 
strontium-90, and plutonium-238.

Spatial optimization was performed using an island 
parallel genetic algorithm and statistical analysis to identify 
near-optimal network designs removing 10, 20, 30, 40, and 50 
wells from the existing network. With this method, choosing 
a greater number of wells to remove results in greater cost 
savings and decreased accuracy of the average relative differ-
ence between interpolated maps of the reduced-dataset and the 
full-dataset. The reduced-networks were able to reproduce the 
spatial patterns of the average concentration plumes for the 10 
selected constituents while preserving their long-term tempo-
ral trends at monitoring sites. The number of sites with suf-
ficient data for determining a local regression model decreases 
with increasing numbers of wells removed, whereas for most 
analytes, the average concentration range of predicted values 
increases with increasing numbers of wells removed. The 
evolutionary search is inclined to remove sites with a smaller 
predicted concentration range.

Temporal optimization was used to identify reductions 
in sampling frequencies by minimizing the redundancy in 
sampling events. An iterative-thinning method was used to 
find an optimal sampling frequency for each constituent-well 
pair. Optimal frequencies indicate that for many of the wells, 
samples may be collected less frequently and still be able to 
characterize the concentration over time. The optimization 
results indicated that the sample-collection interval may be 
increased by an of average of 273 days owing to temporal 
redundancy.
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Appendix 1.  Interactive Web Maps
Appendix 1 contains interactive maps showing the location of monitoring wells, long-term monotonic trends, optimal sam-

pling sites, historical sampling frequencies, and optimal sampling intervals. Appendix 1 is an HTML file available for download 
at https://doi.org/​10.3133/​sir20215031.

Appendix 2.  Software User Manual
Appendix 2 is a software user manual describing package datasets and processing programs (also known as functions in R). 

Appendix 2 is contained in an HTML file available for download at https://doi.org/​10.3133/​sir20215031.

Appendix 3.  Graphs Showing Replicate-Paired Data and Variability Models
Appendix 3 shows two-range models for each of the selected constituents measured for in replicate samples collected from 

wells in the Idaho National Laboratory water-quality network, Idaho, 1989–2018. Appendix 3 is an Adobe Acrobat® PDF file 
available for download at https://doi.org/​10.3133/​sir20215031.

Appendix 4.  Time-Series Graphs Showing Water-Quality Measurements
Appendix 4 shows time-series graphs with Type-1 and Type-2 data classification for selected constituents. Appendix 4 is an 

Adobe Acrobat® PDF file available for download at https://doi.org/​10.3133/​sir20215031.

Appendix 5.  Time-Series Graphs Showing Local Regression Models
Appendix 5 shows time-series graphs with local temporal trends for selected constituents measured for in water samples 

from wells in the Idaho National Laboratory water-quality network, Idaho, 1989–2018. Appendix 5 is an Adobe Acrobat® PDF 
file available for download at https://doi.org/​10.3133/​sir20215031.

Appendix 6.  Table Summarizing Survival Regression Models
Appendix 6 is a table that describes fitted survival regression models for selected constituents measured for in water sam-

ples collected from wells in the Idaho National Laboratory water-quality network, Idaho, 1989–2018. Appendix 6 is an Adobe 
Acrobat® PDF file available for download at https://doi.org/​10.3133/​sir20215031.

Appendix 7.  Time-Series Graphs Showing Survival Regression Models
Appendix 7 shows time-series graphs for fitted survival regression models for selected constituents measured for in water 

samples collected from wells in the Idaho National Laboratory water-quality network, Idaho, 1989–2018. Appendix 7 is an 
Adobe Acrobat® PDF file available for download at https://doi.org/​10.3133/​sir20215031.

Appendix 8.  Graphs Showing Variogram Models
Appendix 8 shows graphs for fitted theoretical variogram models for selected constituents measured for in water sam-

ples collected from wells in the Idaho National Laboratory water-quality network, Idaho, and temporally averaged during 
1989–2018. Appendix 8 is an Adobe Acrobat® PDF file available for download at https://doi.org/​10.3133/​sir20215031.
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Appendix 9.  Maps Showing Kriging Estimates and Observations
Appendix 9 shows maps of kriging estimates and uncertainties for selected constituents measured for in water samples col-

lected from wells in the Idaho National Laboratory water-quality aquifer monitoring network, Idaho, 1989–2018. Appendix 9 is 
an Adobe Acrobat® PDF file available for download at https://doi.org/​10.3133/​sir20215031.

Appendix 10.  Graphs Showing Weighted Objective-Function Values
Appendix 10 shows maps of the weighted objective-function values throughout the Island Parallel Genetic Algorithm 

search—removing 10, 20, 30, 40, and 50 wells from the existing U.S. Geological Survey water-quality monitoring network at 
the Idaho National Laboratory, Idaho. Appendix 10 is an Adobe Acrobat® PDF file available for download at https://doi.org/​
10.3133/​sir20215031.

Appendix 11.  Maps Showing Difference Between Kriged Prediction Surfaces
Appendix 11 shows maps of the difference between the kriged prediction surface using the existing and reduced U.S. 

Geological Survey water-quality monitoring network at the Idaho National Laboratory and vicinity, Idaho. Appendix 11 is an 
Adobe Acrobat® PDF file available for download at https://doi.org/​10.3133/​sir20215031.

Appendix 12.  Table Summarizing Reductions in Sampling Interval
Appendix 12 provides a table showing for each well-analyte combination an optimal sampling interval at the Idaho 

National Laboratory and vicinity, Idaho. Appendix 12 is an Adobe Acrobat® PDF file available for download at https://doi.org/​
10.3133/​sir20215031.
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